Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 045202    DOI: 10.1088/1674-1056/25/4/045202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays

Ren-Wu Zhou(周仁武)1, Ru-Sen Zhou(周儒森)2, Jin-Xing Zhuang(庄金星)3, Jiang-Wei Li(李江炜)1, Mao-Dong Chen(陈茂冬)1, Xian-Hui Zhang(张先徽)1, Dong-Ping Liu(刘东平)1,4, Kostya (Ken) Ostrikov5,6, Si-Ze Yang(杨思泽)1
1 Fujian Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China;
2 Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
3 Xiamen Jueshi Language Training Center, Xiamen 361005, China;
4 Liaoning Key Laboratory of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China;
5 School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia;
6 CSIRO, Materials Science and Engineering, P. O. Box 218, Lindfield, NSW 2070, Australia
Abstract  A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intensified charge coupled device (ICCD) images show that the well-aligned air microplasma device is able to generate a large-area and homogeneous discharge at the applied voltages ranging from 12 kV to 14 kV, with a repetition frequency of 5 kHz, which is attributed to the diffusion effect of plasma on dielectric surface. Moreover, this well-aligned microplasma device may result in the uniform and large-area surface modification of heat-sensitive PET polymers without damage, such as optimization in hydrophobicity and biocompatibility. In the biomedical field, the utility of this well-aligned microplasma device is further testified. It proves to be very efficient for the large-area and uniform inactivation of E. coli cells with a density of 103/cm2 on LB agar plate culture medium, and inactivation efficiency can reach up to 99% for 2-min treatment.
Keywords:  surface diffusion      intensified charge coupled device      surface modification      bacterial inactivation  
Received:  01 November 2015      Revised:  10 December 2015      Accepted manuscript online: 
PACS:  52.50.Dg (Plasma sources)  
  87.80.-y (Biophysical techniques (research methods))  
  52.77.-j (Plasma applications)  
Fund: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313005), and the Fund from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.
Corresponding Authors:  Xian-Hui Zhang     E-mail:  zhangxh@xmu.edu.cn

Cite this article: 

Ren-Wu Zhou(周仁武), Ru-Sen Zhou(周儒森), Jin-Xing Zhuang(庄金星), Jiang-Wei Li(李江炜), Mao-Dong Chen(陈茂冬), Xian-Hui Zhang(张先徽), Dong-Ping Liu(刘东平), Kostya (Ken) Ostrikov, Si-Ze Yang(杨思泽) Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays 2016 Chin. Phys. B 25 045202

[1] Morfill G E, Kong M G and Zimmermann J L 2009 New J. Phys. 11 115011
[2] Zhang X H, Liu D P, Zhou R W, Song Y, Zhang Q, Niu J H, Fan H Y and Yang S Z 2014 Appl. Phys. Lett. 104 043702
[3] Laroussi M, Mendis D A and Rosenberg M 2003 New J. Phys. 5 41
[4] Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke Th, Brandenburg R, von dem Hagen T and Weltmann K D 2011 J. Phys. D: Appl. Phys. 44 013002
[5] Aita T, Ogawa K, Saito Y, Sumiyoshi Y, Higuchi T and Sato S 2010 Surf. & Coat. Technol. 205 861
[6] Huang C, Hsu W T, Liu C H, Wu S Y, Yang S H, Chen T H and Wei T C 2009 IEEE Trans. Plasma Sci. 37 1127
[7] Pothiraja R, Bibinov N and Awakowicz P 2010 J. Phys. D: Appl. Phys. 43 495201
[8] Ostrikov K, Neyts E C and Meyyappan M 2013 Adv. Phys. 62 113
[9] Bussiahn R, Brandenburg R, Gerling T, Kindel E, Lange H, Lembke N, Weltmann K D, von Woedtke Th and Kocher T 2010 Appl. Phys. Lett. 96 143701
[10] Zhang X H, Liu D P, Song Y, Sun Y and Yang S Z 2013 Phys. Plasmas 20 053501
[11] Hsu C C and Yang Y J 2010 IEEE Trans. Plasma Sci. 38 496
[12] Wu S, Lu X, Xiong Z and Pan Y 2010 IEEE Trans. Plasma Sci. 38 3404
[13] Lu X, Xiong Z, Zhao F, Xian Y, Xiong Q, Gong W, Zou C, Jiang Z and Pan Y 2009 Appl. Phys. Lett. 95 181501
[14] Moisan M, Barbeau J, Moreau S, Pelletier J and Tabrizian M 2001 International J. Pharmaceutics 226 1
[15] Kong M G, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J and Zimmermann J L 2009 New J. Phys. 11 115012
[16] Laroussi M, Leipold F 2004 Int. J. Mass Spectrometry 233 81
[17] Eto H, Ono Y, Ogino A and Nagatsu M 2008 Appl. Phys. Lett. 93 221502
[18] Eden J G, Park S J, Cho J H, Kim M H, Houlahan T J and Li B 2013 IEEE Trans. Plasma Sci. 41 661
[19] De Geyter N, Morent R, Gengembre L, Leys C, Payen E, Vlierberghe S V and Schacht E 2008 Plasma Chem. Plasma Process. 28 289
[20] Song Y, Liu D P, Ji L F, Wang W C, Zhao P C, Quan C S, Niu J H and Zhang X H 2012 Plasma Process. Polym. 9 17
[21] Zhou R, Zhang X, Bi Z and Zong Z 2015 Appl. Environ. Microbio. 81 01287
[22] Choi J H, Lee T I, Han I, Baik H K, Song K M, Lim Y S and Lee E S 2006 Plasma Sources Sci. Technol. 15 416
[23] Bibinov N K, Fateev A A and Wiesemann K 2001 J. Phys. D: Appl. Phys. 34 1819
[24] Linss V, Kupfer H, Peter S and Richter F 2004 J. Phys. D: Appl. Phys. 37 1935
[25] Lu X, Jiang Z, Xiong Q, Tang Z, Hu X and Pan Y 2008 Appl. Phys. Lett. 92 81502
[26] Sands B L, Ganguly B N and Tachibana K 2008 Appl. Phys. Lett. 92 151503
[27] Zhu Y, Takada T, Inoue Y and Tu D 1996 IEEE Trans. Dielectr. Electr. Insul. 3 460
[28] Li X, Yuan N, Jia P and Chen J 2010 Phys. Plasma 17 093504
[29] Cao Z, Nie Q, Bayliss D and Kong M 2010 Plasma Sources Sci. Technol. 19 25003
[30] Lu X, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123
[31] Zhou R, Zhang X, Zong Z, Yang Z, Li J, Liu D and Yang S 2015 Chin. Phys. B 24 085201
[32] Sakamoto C, Ayotte G, Turgeon S, Massines F and Laroche G 2009 Langmuir 25 9432
[33] Laroussi M 2009 IEEE Trans. Plasma Sci. 37 714
[34] Walsh J L and Kong M G 2008 Appl. Phys. Lett. 93 111501
[35] Norman A 1954 J. Cell Comp. Phys. 44 1
[36] Sun P, Sun Y, Wu H, Zhu W, Lopez J L, Liu W, Zhang J, Li R and Fang J 2011 Appl. Phys. Lett. 98 021501
[1] Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX
Yuanyuan Liu(刘圆圆), Jianping Cheng(程建平), Pan Pang(庞盼), Bin Liao(廖斌), Bin Wu(吴彬), Minju Ying(英敏菊), Fengshou Zhang(张丰收), Lin Chen(陈琳), Shasha Lv(吕沙沙), Yandong Liu(刘言东), Tianxi Sun(孙天希). Chin. Phys. B, 2020, 29(4): 045203.
[2] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[3] Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite
Zi-Rui Jia(贾梓睿), Zhen-Guo Gao(高振国), Di Lan(兰笛), Yong-Hong Cheng(成永红), Guang-Lei Wu(吴广磊), Hong-Jing Wu(吴宏景). Chin. Phys. B, 2018, 27(11): 117806.
[4] Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Muhammad Ismail, Hafeez Ullah, Yongqing Cai, M Arshad Javid, Ejaz Ahmad, S A Ahmad. Chin. Phys. B, 2016, 25(7): 076601.
[5] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
[6] Composite magnetic nanoparticles:Synthesis and cancer-related applications
Cai Ping (蔡苹), Chen Hong-Min (陈洪敏), Xie Jin (谢晋). Chin. Phys. B, 2014, 23(11): 117504.
[7] Step instability of the In0.2Ga0.8As (001) surface during annealing
Zhang Bi-Chan(张毕禅), Zhou Xun(周勋), Luo Zi-Jiang(罗子江) , Guo Xiang(郭祥), and Ding Zhao(丁召) . Chin. Phys. B, 2012, 21(4): 048101.
[8] A facile way to fabricate aluminum sheet with superhydrophobic and self-cleaning properties
Yang Zhou (杨周), Wu Yi-Zhi (吴以治), Ye Yi-Fan (叶逸凡), Gong Mao-Gang (公茂刚), Xu Xiao-Liang (许小亮). Chin. Phys. B, 2012, 21(12): 126801.
[9] High-performance n-channel organic thin-film transistors based on the dual effects of heterojunction and surface modification
Cao Jin(曹进), Hong Fei(洪飞), Xing Fei-Fei(邢菲菲), Gu Wen(顾文), Guo Xin-An(郭新安), Zhang Hao(张浩), Wei Bin(魏斌), Zhang Jian-Hua(张建华), and Wang Jun(王军). Chin. Phys. B, 2010, 19(3): 037106.
[10] First-principles study of diffusion behaviour of point defects in the O-terminated (0001) surface in wurtzite ZnO
Huang Gui-Yang(黄贵洋), Wang Chong-Yu(王崇愚), and Wang Jian-Tao(王建涛) . Chin. Phys. B, 2010, 19(1): 013101.
[11] Surface diffusion of Si, Ge and C adatoms on Si (001) substrate studied by the molecular dynamics simulation
Chen Zhi-Hui(陈智辉), Yu Zhong-Yuan(俞重远), Lu Peng-Fei(芦鹏飞), and Liu Yu-Min(刘玉敏). Chin. Phys. B, 2009, 18(10): 4591-4597.
[12] Synthesis and photoluminescence properties of Nd2O3 nanoparticles modified by sodium bis(2-ethylhexyl) sulfosuccinate
Ren Jian-Hua (任建华), Zhao Tong-Gang (赵同刚), Liu Jian-Hua (刘建华), Kong Juan (孔娟), He Jia-Xin (贺加欣), Guo Lin (郭林). Chin. Phys. B, 2008, 17(12): 4669-4672.
[13] Surface morphology evolution of Si(110) by ion sputtering as a function of sample temperature
Qi Le-Jun (漆乐俊), Ling Li (凌立), Li Wei-Qing (李维卿), Yang Xin-Ju (杨新菊), Gu Chang-Xin (顾昌鑫), Lu Ming (陆明). Chin. Phys. B, 2005, 14(8): 1626-1630.
[14] SURFACE CAPPING OF TiO2 COLLOIDAL NANOPARTICLES STUDIED BY FOURIER TRANSFORM RAMAN SPECTRA
Wang Xin (邓慧华), Lu Zu-hong (汪昕), Deng Hui-hua (郁清), Yu Tsing (毛海舫), Mao Hai-fang (铃木敏重), Suzuki Toshishige (陆祖宏). Chin. Phys. B, 2001, 10(13): 59-64.
No Suggested Reading articles found!