PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays |
Ren-Wu Zhou(周仁武)1, Ru-Sen Zhou(周儒森)2, Jin-Xing Zhuang(庄金星)3, Jiang-Wei Li(李江炜)1, Mao-Dong Chen(陈茂冬)1, Xian-Hui Zhang(张先徽)1, Dong-Ping Liu(刘东平)1,4, Kostya (Ken) Ostrikov5,6, Si-Ze Yang(杨思泽)1 |
1 Fujian Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China; 2 Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; 3 Xiamen Jueshi Language Training Center, Xiamen 361005, China; 4 Liaoning Key Laboratory of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China; 5 School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia; 6 CSIRO, Materials Science and Engineering, P. O. Box 218, Lindfield, NSW 2070, Australia |
|
|
Abstract A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intensified charge coupled device (ICCD) images show that the well-aligned air microplasma device is able to generate a large-area and homogeneous discharge at the applied voltages ranging from 12 kV to 14 kV, with a repetition frequency of 5 kHz, which is attributed to the diffusion effect of plasma on dielectric surface. Moreover, this well-aligned microplasma device may result in the uniform and large-area surface modification of heat-sensitive PET polymers without damage, such as optimization in hydrophobicity and biocompatibility. In the biomedical field, the utility of this well-aligned microplasma device is further testified. It proves to be very efficient for the large-area and uniform inactivation of E. coli cells with a density of 103/cm2 on LB agar plate culture medium, and inactivation efficiency can reach up to 99% for 2-min treatment.
|
Received: 01 November 2015
Revised: 10 December 2015
Accepted manuscript online:
|
PACS:
|
52.50.Dg
|
(Plasma sources)
|
|
87.80.-y
|
(Biophysical techniques (research methods))
|
|
52.77.-j
|
(Plasma applications)
|
|
Fund: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313005), and the Fund from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China. |
Corresponding Authors:
Xian-Hui Zhang
E-mail: zhangxh@xmu.edu.cn
|
Cite this article:
Ren-Wu Zhou(周仁武), Ru-Sen Zhou(周儒森), Jin-Xing Zhuang(庄金星), Jiang-Wei Li(李江炜), Mao-Dong Chen(陈茂冬), Xian-Hui Zhang(张先徽), Dong-Ping Liu(刘东平), Kostya (Ken) Ostrikov, Si-Ze Yang(杨思泽) Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays 2016 Chin. Phys. B 25 045202
|
[1] |
Morfill G E, Kong M G and Zimmermann J L 2009 New J. Phys. 11 115011
|
[2] |
Zhang X H, Liu D P, Zhou R W, Song Y, Zhang Q, Niu J H, Fan H Y and Yang S Z 2014 Appl. Phys. Lett. 104 043702
|
[3] |
Laroussi M, Mendis D A and Rosenberg M 2003 New J. Phys. 5 41
|
[4] |
Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke Th, Brandenburg R, von dem Hagen T and Weltmann K D 2011 J. Phys. D: Appl. Phys. 44 013002
|
[5] |
Aita T, Ogawa K, Saito Y, Sumiyoshi Y, Higuchi T and Sato S 2010 Surf. & Coat. Technol. 205 861
|
[6] |
Huang C, Hsu W T, Liu C H, Wu S Y, Yang S H, Chen T H and Wei T C 2009 IEEE Trans. Plasma Sci. 37 1127
|
[7] |
Pothiraja R, Bibinov N and Awakowicz P 2010 J. Phys. D: Appl. Phys. 43 495201
|
[8] |
Ostrikov K, Neyts E C and Meyyappan M 2013 Adv. Phys. 62 113
|
[9] |
Bussiahn R, Brandenburg R, Gerling T, Kindel E, Lange H, Lembke N, Weltmann K D, von Woedtke Th and Kocher T 2010 Appl. Phys. Lett. 96 143701
|
[10] |
Zhang X H, Liu D P, Song Y, Sun Y and Yang S Z 2013 Phys. Plasmas 20 053501
|
[11] |
Hsu C C and Yang Y J 2010 IEEE Trans. Plasma Sci. 38 496
|
[12] |
Wu S, Lu X, Xiong Z and Pan Y 2010 IEEE Trans. Plasma Sci. 38 3404
|
[13] |
Lu X, Xiong Z, Zhao F, Xian Y, Xiong Q, Gong W, Zou C, Jiang Z and Pan Y 2009 Appl. Phys. Lett. 95 181501
|
[14] |
Moisan M, Barbeau J, Moreau S, Pelletier J and Tabrizian M 2001 International J. Pharmaceutics 226 1
|
[15] |
Kong M G, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J and Zimmermann J L 2009 New J. Phys. 11 115012
|
[16] |
Laroussi M, Leipold F 2004 Int. J. Mass Spectrometry 233 81
|
[17] |
Eto H, Ono Y, Ogino A and Nagatsu M 2008 Appl. Phys. Lett. 93 221502
|
[18] |
Eden J G, Park S J, Cho J H, Kim M H, Houlahan T J and Li B 2013 IEEE Trans. Plasma Sci. 41 661
|
[19] |
De Geyter N, Morent R, Gengembre L, Leys C, Payen E, Vlierberghe S V and Schacht E 2008 Plasma Chem. Plasma Process. 28 289
|
[20] |
Song Y, Liu D P, Ji L F, Wang W C, Zhao P C, Quan C S, Niu J H and Zhang X H 2012 Plasma Process. Polym. 9 17
|
[21] |
Zhou R, Zhang X, Bi Z and Zong Z 2015 Appl. Environ. Microbio. 81 01287
|
[22] |
Choi J H, Lee T I, Han I, Baik H K, Song K M, Lim Y S and Lee E S 2006 Plasma Sources Sci. Technol. 15 416
|
[23] |
Bibinov N K, Fateev A A and Wiesemann K 2001 J. Phys. D: Appl. Phys. 34 1819
|
[24] |
Linss V, Kupfer H, Peter S and Richter F 2004 J. Phys. D: Appl. Phys. 37 1935
|
[25] |
Lu X, Jiang Z, Xiong Q, Tang Z, Hu X and Pan Y 2008 Appl. Phys. Lett. 92 81502
|
[26] |
Sands B L, Ganguly B N and Tachibana K 2008 Appl. Phys. Lett. 92 151503
|
[27] |
Zhu Y, Takada T, Inoue Y and Tu D 1996 IEEE Trans. Dielectr. Electr. Insul. 3 460
|
[28] |
Li X, Yuan N, Jia P and Chen J 2010 Phys. Plasma 17 093504
|
[29] |
Cao Z, Nie Q, Bayliss D and Kong M 2010 Plasma Sources Sci. Technol. 19 25003
|
[30] |
Lu X, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123
|
[31] |
Zhou R, Zhang X, Zong Z, Yang Z, Li J, Liu D and Yang S 2015 Chin. Phys. B 24 085201
|
[32] |
Sakamoto C, Ayotte G, Turgeon S, Massines F and Laroche G 2009 Langmuir 25 9432
|
[33] |
Laroussi M 2009 IEEE Trans. Plasma Sci. 37 714
|
[34] |
Walsh J L and Kong M G 2008 Appl. Phys. Lett. 93 111501
|
[35] |
Norman A 1954 J. Cell Comp. Phys. 44 1
|
[36] |
Sun P, Sun Y, Wu H, Zhu W, Lopez J L, Liu W, Zhang J, Li R and Fang J 2011 Appl. Phys. Lett. 98 021501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|