Growth and characterization of Bi(110)/CrTe2 heterostructures: Exploring interplay between magnetism and topology
Zhenyu Yuan(袁震宇)1,2, Fazhi Yang(杨发枝)1,2, Baiqing Lv(吕佰晴)3, Yaobo Huang(黄耀波)4, Tian Qian(钱天)1,5, Jinpeng Xu(徐金朋)1,2,6,7,†, and Hong Ding(丁洪)3,6
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 4 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China; 6 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 7 School of Physics, Shandong University, Ji'nan 250100 China
Abstract The interplay between topology and magnetism is vital for realizing exotic quantum phenomena, significant examples including quantum anomalous Hall effect, axion insulators, and high-order topological states. These states host great potential for future applications in high-speed and low-consumption electronic devices. Despite being extensively investigated, practical platforms are still scarce. In this work, with molecular beam epitaxy (MBE), we provide the first experimental report on high-quality Bi(110)/CrTe magnetic heterostructure. By employing in-situ high-resolution scanning tunneling microscopy, we are able to examine the interaction between magnetism and topology. There is a potential edge state at an energy level above the Fermi level, but no edge states observed near the Fermi level The absence of high-order topological corner states near highlights the importance of lattice matching and interface engineering in designing high-order topological states. Our study provides key insights into the interplay between two-dimensional magnetic and topological materials and offers an important dimension for engineering magnetic topological states.
Fund: The work at IOP is supported by grants from the National Natural Science Foundation of China (Grant No. U2032204), the Ministry of Science and Technology of China (Grant No. 2022YFA1403800), and the Chinese Academy of Sciences (Grant No. XDB33000000).
Zhenyu Yuan(袁震宇), Fazhi Yang(杨发枝), Baiqing Lv(吕佰晴), Yaobo Huang(黄耀波), Tian Qian(钱天), Jinpeng Xu(徐金朋), and Hong Ding(丁洪) Growth and characterization of Bi(110)/CrTe2 heterostructures: Exploring interplay between magnetism and topology 2024 Chin. Phys. B 33 026802
[1] Anderson P W 1972 Science177 393 [2] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys.6 1181 [3] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett.45 494 [4] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett.48 1559 [5] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature566 475 [6] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature566 480 [7] Tang F, Po H C, Vishwanath A and Wan X 2019 Nature566 486 [8] Schindler F, Wang Z J, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Guéron S, Yazdani A, Bernevig B A and Neupert T 2014 Nat. Phys.10 664 [10] Aggarwal L, Zhu P, Hughes T L and Madhavan V 2021 Nat. Commun.12 4420 [11] Nayak A K, Reiner J, Queiroz R, Fu H, Shekhar C, Yan B, Felser C, Avraham N and Beidenkopf H 2007 Science318 766 [13] Meyer M, Schmid S, Jabeen F, Bastard G, Hartmann F and Höfling S 2021 Phys. Rev. B104 085301 [14] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science357 287 [15] Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K and Shen Z X 2017 Nat. Phys.13 683 [16] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science359 76 [17] Kundu A K, Gu G and Valla T 2021 ACS Appl. Mater. Interfaces13 33627 [18] Gao C L, Qian D, Liu C H, Jia J F and Liu F 2013 Chin. Phys. B22 067304 [19] Peng L, Xian J J, Tang P, Rubio A, Zhang S C, Zhang W and Fu Y S 2018 Phys. Rev. B98 245108 [20] Wells J W, Dil J H, Meier F, Lobo-Checa J, Petrov V N, Osterwalder J, Ugeda M M, Fernandez-Torrente I, Pascual J I, Rienks E D L, Jensen M F and Hofmann Ph 2009 Phys. Rev. Lett.102 096802 [21] Yang F, Miao L, Wang Z F, Yao M Y, Zhu F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C, Liu F, Qian D, Gao C L and Jia J F 2012 Phys. Rev. Lett.109 016801 [22] Yao M Y, Zhu F, Han C Q, Guan D D, Liu C, Qian D and Jia J 2016 Sci. Rep.6 21326 [23] Lu Y, Xu W, Zeng M, Yao G, Shen L, Yang M, Luo Z, Pan F, Wu K, Das T, He P, Jiang J, Martin J, Feng Y P, Lin H and Wang X 2015 Nano Lett.15 80 [24] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C and Jia J F 2014 Phys. Rev. Lett.112 217001 [25] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett.114 017001 [26] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F and Xue Q K 2012 Science336 52 [27] Qin H, Chen X, Guo B, Pan T, Zhang M, Xu B, Chen J, He H, Mei J, Chen W, Ye F and Wang G 2021 Nano Lett.21 1327 [28] He Q L, Liu H, He M, Lai Y H, He H, Wang G, Law K T, Lortz R, Wang J and Sou I K 2014 Nat. Commun.5 4247 [29] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science306 666 [30] Sangwan V K and Hersam M C 2018 Ann. Rev. Phys. Chem.69 299 [31] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech.7 699 [32] Wang W, Wu X and Zhang J 2015 J. Nanomater.2015 e198126 [33] Zhang X, Hou L, Ciesielski A and Samorí P 2016 Adv. Energy Mater.6 1600671 [34] Jiang X H, Qin S C, Xing Z Y, Zou X Y, Deng Y F, Wang W and Wang L 2021 Acta Phys. Sin.70 127801 (in Chinese) [35] Xiao H, Mi M J and Wang Y L 2021 Acta Phys. Sin.70 127503 (in Chinese) [36] Freitas D C, Weht R, Sulpice A, Remenyi G, Strobel P, Gay F, Marcus J and Núñez-Regueiro M 2015 J. Phys.: Condens. Matter27 176002 [37] Zhang X, Lu Q, Liu W, Niu W, Sun J, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G and Xu Y 2021 Nat. Commun.12 2492 [38] Chua R, Zhou J, Yu X, Yu W, Gou J, Zhu R, Zhang L, Liu M, Breese M B H, Chen W, Loh K P, Feng Y P, Yang M, Huang Y L and Wee A T S 2021 Adv. Mater.33 2103360 [39] Sun X, Li W, Wang X, Sui Q, Zhang T, Wang Z, Liu L, Li D, Feng S, Zhong S, Wang H, Bouchiat V, Nunez Regueiro M, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z, Dong B, Wu X, Yang T, Yu G, Wang B, Han Z, Han X and Zhang Z 2020 Nano Res.13 3358 [40] Xian J J, Wang C, Nie J H, Li R, Han M, Lin J, Zhang W H, Liu Z Y, Zhang Z M, Miao M P, Yi Y, Wu S, Chen X, Han J, Xia Z, Ji W and Fu Y S 2022 Nat. Commun.13 257 [41] Lv H Y, Lu W J, Shao D F, Liu Y and Sun Y P 2015 Phys. Rev. B92 214419 [42] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano7 2898 [43] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol.14 408 [44] Zhang X, Ambhire S C, Lu Q, Niu W, Cook J, Jiang J S, Hong D, Alahmed L, He L, Zhang R, Xu Y, Zhang S L, Li P and Bian G 2021 ACS Nano15 15710 [45] Nie J, Li R, Miao M, Fu Y and Zhang W 2023 Materials Futures2 021001 [46] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B74 085308 [47] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B78 195424 [48] Nomura K and Nagaosa N 2011 Phys. Rev. Lett.106 166802 [49] Wang J, Sun X, Du H, Ma C and Wang B 2022 Phys. Rev. B105 115407 [50] Sun J T, Huang H, Wong S L, Gao H J, Feng Y P and Wee A T S 2012 Phys. Rev. Lett.109 246804 [51] Zhang K H L, McLeod I M, Lu Y H, Dhanak V R, Matilainen A, Lahti M, Pussi K, Egdell R G, Wang X S, Wee A T S and Chen W 2011 Phys. Rev. B83 235418 [52] He B, Tian G, Gou J, Liu B, Shen K, Tian Q, Yu Z, Song F, Xie H, Gao Y, Lu Y, Wu K, Chen L and Huang H 2019 Surface Science679 147 [53] Jin K H, Oh E, Stania R, Liu F and Yeom H W 2021 Nano Lett.21 9468 [54] Xi Y, Zhao M, Feng H, Sun Y, Man X, Xu X, Hao W, Dou S and Du Y 2021 J. Phys.: Condens. Matter34 074003 [55] Momma K and Izumi F 2011 J. Appl. Crystallogr44 1272 [56] Liu J Y, Sun H H, Guan D D, Li Y Y, Wang S Y, Liu C H, Zheng H and Jia J F 2018 Acta Phys. Sin.67 170701 (in Chinese) [57] Chen C, Song Z, Zhao J Z, Chen Z, Yu Z M, Sheng X L and Yang S A 2020 Phys. Rev. Lett.125 056402 [58] McGuire M A 2017 Crystals7 121 [59] Meng L, Zhou Z, Xu M, Yang S, Si K, Liu L, Wang X, Jiang H, Li B, Qin P, Zhang P, Wang J, Liu Z, Tang P, Ye Y, Zhou W, Bao L, Gao H J and Gong Y 2021 Nat. Commun.12 809 [60] Yu W, Li J, Herng T S, Wang Z, Zhao X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J, Chen Z, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J and Loh K P 2019 Adv. Mater.31 1903779 [61] Cui F, Zhao X, Xu J, Tang B, Shang Q, Shi J, Huan Y, Liao J, Chen Q, Hou Y, Zhang Q, Pennycook S J and Zhang Y 2020 Adv. Mater.32 1905896 [62] Ito N, Kikkawa T, Barker J, Hirobe D, Shiomi Y and Saitoh E 2019 Phys. Rev. B100 060402 [63] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater.17 778 [64] May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X and McGuire M A 2019 ACS Nano13 4436
Epitaxial fabrication of monolayer copper arsenide on Cu(111) Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[8]
Epitaxial growth and air-stability of monolayer Cu2Te K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.