CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Influence of a deep-level-defect band formed in a heavily Mg-doped GaN contact layer on the Ni/Au contact to p-GaN |
Li Xiao-Jing (李晓静)a, Zhao De-Gang (赵德刚)a, Jiang De-Sheng (江德生)a, Chen Ping (陈平)a, Zhu Jian-Jun (朱建军)a, Liu Zong-Shun (刘宗顺)a, Le Ling-Cong (乐伶聪)a, Yang Jing (杨静)a, He Xiao-Guang (何晓光)a, Zhang Li-Qun (张立群)b, Liu Jian-Ping (刘建平)a b c, Zhang Shu-Ming (张书明)b, Yang Hui (杨辉)a b |
a State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China |
|
|
Abstract The influence of a deep-level-defect (DLD) band formed in a heavily Mg-doped GaN contact layer on the performance of Ni/Au contact to p-GaN is investigated. The thin heavily Mg-doped GaN (p++-GaN) contact layer with DLD band can effectively improve the performance of Ni/Au ohmic contact to p-GaN. The temperature-dependent I-V measurement shows that the variable-range hopping (VRH) transportation through the DLD band plays a dominant role in the ohmic contact. The thickness and Mg/Ga flow ratio of p++-GaN contact layer have a significant effect on ohmic contact by controlling the Mg impurity doping and the formation of a proper DLD band. When the thickness of the p++-GaN contact layer is 25 nm thick and the Mg/Ga flow rate ratio is 10.29%, an ohmic contact with low specific contact resistivity of 6.97× 10-4Ω ·cm2 is achieved.
|
Received: 13 March 2015
Revised: 14 April 2015
Accepted manuscript online:
|
PACS:
|
68.35.Ja
|
(Surface and interface dynamics and vibrations)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
61.82.Bg
|
(Metals and alloys)
|
|
67.25.bh
|
(Films and restricted geometries)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61474110, 61377020, 61376089, 61223005, and 61176126), the National Science Fund for Distinguished Young Scholars of China (Grant No. 60925017), One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362). |
Corresponding Authors:
Zhao De-Gang
E-mail: dgzhao@red.semi.ac.cn
|
Cite this article:
Li Xiao-Jing (李晓静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Chen Ping (陈平), Zhu Jian-Jun (朱建军), Liu Zong-Shun (刘宗顺), Le Ling-Cong (乐伶聪), Yang Jing (杨静), He Xiao-Guang (何晓光), Zhang Li-Qun (张立群), Liu Jian-Ping (刘建平), Zhang Shu-Ming (张书明), Yang Hui (杨辉) Influence of a deep-level-defect band formed in a heavily Mg-doped GaN contact layer on the Ni/Au contact to p-GaN 2015 Chin. Phys. B 24 096804
|
[1] |
Nakamura S and Fasol G 1997 The Blue Laser Diode
|
[2] |
Lin Y J 2005 Appl. Phys. Lett. 86 122109
|
[3] |
Jiang H X, Jin S X, Li J, Shakya J and Lin J Y 2001 Appl. Phys. Lett. 78 1303
|
[4] |
Luther B P, Mohney S E, Jackson T N, Asif K M, Chen Q and Yang J W 1997 Appl. Phys. Lett. 70 57
|
[5] |
Song J O, Kim S H, Kwak J S and Seong T Y 2003 Appl. Phys. Lett. 83 1154
|
[6] |
Huang Y P, Yun F, Ding W, Wang Y, Wang H, Zhao Y K, Zhang Y, Guo M F, Hou X and Liu S 2014 Acta Phys. Sin. 63 127302 (in Chinese)
|
[7] |
Narayan J, Wang H, Oh T H, Choi H K and Fan J C C 2002 Appl. Phys. Lett. 81 3978
|
[8] |
Kim H K, Seong T Y, Adesida I, Tang C W and Lau K M 2004 Appl. Phys. Lett. 84 1710
|
[9] |
Chary I, Chandolu A, Borisov B, Kuryatkov V, Nikishin S and Holtz M 2009 J. Electron. Mater. 38 545
|
[10] |
Greco G, Prystawko P, Leszczyński M, Nigro R L, Raineri V and Roccaforte F 2011 J. Appl. Phys. 110 123703
|
[11] |
Ding Z B, Wang K, Chen T X, Chen D and Yao S D 2007 Acta Phys. Sin. 57 244505 (in Chinese)
|
[12] |
Sun J, Rickert K A, Redwing J M, Ellis A B, Himpsel F J and Kuech T F 2000 Appl. Phys. Lett. 76 415
|
[13] |
Zhang A P, Luo B, Johnson J W, Ren F, Han J and Pearton S J 2001 Appl. Phys. Lett. 79 3636
|
[14] |
Park Y and Kim H 2011 Appl. Phys. Express 4 085701
|
[15] |
HoJ K, Jong C S, Chiu C C, Huang C N, Shih K K, Chen L C, Chen F R and Kai J J 1999 J. Appl. Phys. 86 4491
|
[16] |
Chua E K, Zhao R, Shi L P, Chong T C, Schlesinger T E and Bain J A 2012 Appl. Phys. Lett. 101 012107
|
[17] |
Kwak J S 2004 J. Appl. Phys. 95 5917
|
[18] |
Wu L L, Zhao D G, Jiang D S, Chen P, Le L C, Li L, Liu Z S, Zhang S M, Zhu J J, Wang H, Zhang B S and Yang H 2013 Semicond. Sci. Tech. 28 105020
|
[19] |
Mott N F 1969 Contemp. Phys. 10 125
|
[20] |
Kwak J S, Nam O H and Park Y 2002 Appl. Phys. Lett. 80 3554
|
[21] |
Figge S, Kroger R, Bottcher T, Ryder P L and Hommel D 2002 Appl. Phys. Lett. 81 4748
|
[22] |
Götz W, Johnson N M and Bour D P 1996 Appl. Phys. Lett. 68 3470
|
[23] |
Kozodoy P, Xing H, DenBaars S P, Mishra U K, Saxler A, Perrin R, Elhamri S and Mitchel W C 2000 J. Appl. Phys. 87 1832
|
[24] |
Kumar M S, Chung S J, Shim H W, Hong C H, Suh E K and Lee H J 2004 Semicond. Sci. Tech. 19 725
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|