Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087508    DOI: 10.1088/1674-1056/acd923
RAPID COMMUNICATION Prev   Next  

Prediction of a monolayer spin-spiral semiconductor: CoO with a honeycomb lattice

Jie Zhang(张杰)1,2, Shunuo Song(宋姝诺)1, Yan-Fang Zhang(张艳芳)1,†, Yu-Yang Zhang(张余洋)1, Sokrates T. Pantelides3,1, and Shixuan Du(杜世萱)1,2,4,‡
1. Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2. Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
3. Department of Physics and Astronomy and Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA;
4. Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The recent successful fabrication of two-dimensional (2D) CoO with nanometer-thickness motivates us to investigate monolayer CoO due to possible magnetic properties induced by Co atoms. Here, we employ first-principles calculations to show that monolayer CoO is a 2D spin-spiral semiconductor with a honeycomb lattice. The calculated phonon dispersion reveals the monolayer's dynamical stability. Monolayer CoO exhibits a type-I spin-spiral magnetic ground state. The spin-spiral state and the direct bandgap character are both robust under biaxial compressive strain (-5%) to tensile strain (5%). The bandgap varies only slightly under either compressive or tensile strain up to 5%. These results suggest a potential for applications in spintronic devices and offer a new platform to explore magnetism in the 2D limit.
Keywords:  spin-spiral semiconductor      type-II multiferroic      bandgap engineering      monolayer CoO  
Received:  05 April 2023      Revised:  25 May 2023      Accepted manuscript online:  26 May 2023
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.47.Lx (Magnetic oxides)  
  75.50.Pp (Magnetic semiconductors)  
Fund: This work was supported by grants from the National Natural Science Foundation of China (Grant Nos.52102193, 52250402, and 61888102), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB30000000),and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Yan-Fang Zhang, Shixuan Du     E-mail:  zhangyanfang@ucas.ac.cn;sxdu@iphy.ac.cn

Cite this article: 

Jie Zhang(张杰), Shunuo Song(宋姝诺), Yan-Fang Zhang(张艳芳),Yu-Yang Zhang(张余洋), Sokrates T. Pantelides, and Shixuan Du(杜世萱) Prediction of a monolayer spin-spiral semiconductor: CoO with a honeycomb lattice 2023 Chin. Phys. B 32 087508

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Han X F, Wan C H, Wu H, Guo C Y, Tang P, Yan Z R, Xing Y W, He W Q and Yu G Q 2022 Chin. Phys. B 31 117504
[3] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[5] Hohenberg P C 1967 Phys. Rev. 158 383
[5] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009
[6] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[7] Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
[8] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[9] Khanh N D, Nakajima T, Yu X Z, Gao S, Shibata K, Hirschberger M, Yamasaki Y, Sagayama H, Nakao H, Peng L C, Nakajima K, Takagi R, Arima T H, Tokura Y and Seki S 2020 Nat. Nanotechnol. 15 444
[10] Augustin M, Jenkins S, Evans R F L, Novoselov K S and Santos E J G 2021 Nat. Commun. 12 185
[11] Song Q, Occhialini C A, Ergeçen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N and Comin R 2022 Nature 602 601
[12] Zhang J J, Lin L F, Zhang Y, Wu M H, Yakobson B I and Dong S 2018 J. Am. Chem. Soc. 140 9768
[13] Prayitno T B and Ishii F 2019 J. Phys. Soc. Jpn. 88 104705
[14] Laref S, Kim K W and Manchon A 2020 Phys. Rev. B 102 060402
[15] Ding N, Chen J, Dong S and Stroppa A 2020 Phys. Rev. B 102 165129
[16] Ni J Y, Li X Y, Amoroso D, He X, Feng J S, Kan E J, Picozzi S and Xiang H J 2021 Phys. Rev. Lett. 127 247204
[17] Bao D L, O'Hara A, Du S X and Pantelides S T 2022 Nano Lett. 22 3598
[18] Guo Y, Ma L, Mao K, Ju M G, Bai Y Z, Zhao J J and Zeng X C 2019 Nanoscale Horiz. 4 592
[19] Zavabeti A, Ou J Z, Carey B J, Syed N, Orrell-Trigg R, Mayes E L H, Xu C L, Kavehei O, O'Mullane A P, Kaner R B, Kalantar-zadeh K and Daeneke T 2017 Science 358 332
[20] Yang J, Zeng Z Y, Kang J, Betzler S, Czarnik C, Zhang X W, Ophus C, Yu C, Bustillo K, Pan M, Qiu J S, Wang L W and Zheng H M 2019 Nat. Mater. 18 970
[21] Zhao S S, Zhang J Q and Fu L 2021 Adv. Mater. 33 2005544
[22] Ta H Q, Mendes R G, Liu Y, Yang X Q, Luo J P, Bachmatiuk A, Gemming T, Zeng M Q, Fu L, Liu L J and Rümmeli M H 2021 Adv. Sci. 8 2100619
[23] Chahal S, Kauzlarich S M and Kumar P 2021 ACS Materials Lett. 3 631
[24] Xie H G, Li Z, Cheng L, Haidry A A, Tao J, Xu Y, Xu K and Ou J Z 2022 iScience 25 103598
[25] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G and Marzari N 2018 Nat. Nanotechnol. 13 246
[26] Yang T, Song T T, Callsen M, Zhou J, Chai J W, Feng Y P, Wang S J and Yang M 2019 Adv. Mater. Interfaces 6 1801160
[27] Bandyopadhyay A, Frey N C, Jariwala D and Shenoy V B 2019 Nano Lett. 19 7793
[28] Friedrich R, Ghorbani-Asl M, Curtarolo S and Krasheninnikov A V 2022 Nano Lett. 22 989
[29] Quang H T, Bachmatiuk A, Dianat A, Ortmann F, Zhao J, Warner J H, Eckert J, Cunniberti G and Rümmeli M H 2015 ACS Nano 9 11408
[30] Yin K B, Zhang Y Y, Zhou Y L, Sun L T, Chisholm M F, Pantelides S T and Zhou W 2017 2D Mater. 4 011001
[31] Zhang B Y, Xu K, Yao Q F, Jannat A, Ren G H, Field M R, Wen X M, Zhou C H, Zavabeti A and Ou J Z 2021 Nat. Mater. 20 1073
[32] Skomski R, Wei X H and Sellmyer D J 2008 J. Appl. Phys. 103 07C908
[33] Deng H X, Li J B, Li S S, Xia J B, Walsh A and Wei S H 2010 Appl. Phys. Lett. 96 162508
[34] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[35] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[36] Sandratskii L M and Guletskii P G 1986 J. Phys. F: Met. Phys. 16 L43
[37] Sandratskii L M 1991 J. Phys.: Condens. Matter 3 8565
[38] Blöchl P E 1994 Phys. Rev. B 50 17953
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[41] van Elp J, Wieland J L, Eskes H, Kuiper P, Sawatzky G A, de Groot F M F and Turner T S 1991 Phys. Rev. B 44 6090
[42] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[43] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[44] Xu C S, Chen P, Tan H X, Yang Y R, Xiang H J and Bellaiche L 2020 Phys. Rev. Lett. 125 037203
[45] Lin X, Lu J C, Shao Y, et al. 2017 Nat. Mater. 16 717
[46] Dai Z H, Liu L Q and Zhang Z 2019 Adv. Mater. 31 1805417
[47] Nguyen V H, Nguyen H V, Saint-Martin J and Dollfus P 2015 Nanotechnology 26 115201
[48] Kramer E, van Dorp J, van Leeuwen R and Venstra W J 2015 Appl. Phys. Lett. 107 091903
[49] Wang Y, Guo Y L, Zeng C X, Yang D Y, Zhang Y, Wu L T, Wu Y Z, Hao J, Wang J L and Yang R S 2022 Nano Energy 104 107983
[50] Xian J J, Wang C, Nie J H, Li R, Han M J, Lin J H, Zhang W H, Liu Z Y, Zhang Z M, Miao M P, Yi Y F, Wu S W, Chen X D, Han J B, Xia Z C, Ji W and Fu Y S 2022 Nat. Commun. 13 257
[1] Germanene nanomeshes:Cooperative effects of degenerate perturbation and uniaxial strain on tuning bandgap
Yan Su(苏燕), Xinyu Fan(范新宇). Chin. Phys. B, 2017, 26(10): 108101.
No Suggested Reading articles found!