Prediction of a monolayer spin-spiral semiconductor: CoO with a honeycomb lattice
Jie Zhang(张杰)1,2, Shunuo Song(宋姝诺)1, Yan-Fang Zhang(张艳芳)1,†, Yu-Yang Zhang(张余洋)1, Sokrates T. Pantelides3,1, and Shixuan Du(杜世萱)1,2,4,‡
1. Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2. Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China; 3. Department of Physics and Astronomy and Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA; 4. Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract The recent successful fabrication of two-dimensional (2D) CoO with nanometer-thickness motivates us to investigate monolayer CoO due to possible magnetic properties induced by Co atoms. Here, we employ first-principles calculations to show that monolayer CoO is a 2D spin-spiral semiconductor with a honeycomb lattice. The calculated phonon dispersion reveals the monolayer's dynamical stability. Monolayer CoO exhibits a type-I spin-spiral magnetic ground state. The spin-spiral state and the direct bandgap character are both robust under biaxial compressive strain (-5%) to tensile strain (5%). The bandgap varies only slightly under either compressive or tensile strain up to 5%. These results suggest a potential for applications in spintronic devices and offer a new platform to explore magnetism in the 2D limit.
Fund: This work was supported by grants from the National Natural Science Foundation of China (Grant Nos.52102193, 52250402, and 61888102), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB30000000),and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:
Yan-Fang Zhang, Shixuan Du
E-mail: zhangyanfang@ucas.ac.cn;sxdu@iphy.ac.cn
Cite this article:
Jie Zhang(张杰), Shunuo Song(宋姝诺), Yan-Fang Zhang(张艳芳),Yu-Yang Zhang(张余洋), Sokrates T. Pantelides, and Shixuan Du(杜世萱) Prediction of a monolayer spin-spiral semiconductor: CoO with a honeycomb lattice 2023 Chin. Phys. B 32 087508
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science294 1488 [2] Han X F, Wan C H, Wu H, Guo C Y, Tang P, Yan Z R, Xing Y W, He W Q and Yu G Q 2022 Chin. Phys. B31 117504 [3] Mermin N D and Wagner H 1966 Phys. Rev. Lett.17 1133 [5] Hohenberg P C 1967 Phys. Rev.158 383 [5] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater.3 031009 [6] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett.16 7433 [7] Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature546 270 [8] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature546 265 [9] Khanh N D, Nakajima T, Yu X Z, Gao S, Shibata K, Hirschberger M, Yamasaki Y, Sagayama H, Nakao H, Peng L C, Nakajima K, Takagi R, Arima T H, Tokura Y and Seki S 2020 Nat. Nanotechnol.15 444 [10] Augustin M, Jenkins S, Evans R F L, Novoselov K S and Santos E J G 2021 Nat. Commun.12 185 [11] Song Q, Occhialini C A, Ergeçen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N and Comin R 2022 Nature602 601 [12] Zhang J J, Lin L F, Zhang Y, Wu M H, Yakobson B I and Dong S 2018 J. Am. Chem. Soc.140 9768 [13] Prayitno T B and Ishii F 2019 J. Phys. Soc. Jpn.88 104705 [14] Laref S, Kim K W and Manchon A 2020 Phys. Rev. B102 060402 [15] Ding N, Chen J, Dong S and Stroppa A 2020 Phys. Rev. B102 165129 [16] Ni J Y, Li X Y, Amoroso D, He X, Feng J S, Kan E J, Picozzi S and Xiang H J 2021 Phys. Rev. Lett.127 247204 [17] Bao D L, O'Hara A, Du S X and Pantelides S T 2022 Nano Lett.22 3598 [18] Guo Y, Ma L, Mao K, Ju M G, Bai Y Z, Zhao J J and Zeng X C 2019 Nanoscale Horiz.4 592 [19] Zavabeti A, Ou J Z, Carey B J, Syed N, Orrell-Trigg R, Mayes E L H, Xu C L, Kavehei O, O'Mullane A P, Kaner R B, Kalantar-zadeh K and Daeneke T 2017 Science358 332 [20] Yang J, Zeng Z Y, Kang J, Betzler S, Czarnik C, Zhang X W, Ophus C, Yu C, Bustillo K, Pan M, Qiu J S, Wang L W and Zheng H M 2019 Nat. Mater.18 970 [21] Zhao S S, Zhang J Q and Fu L 2021 Adv. Mater.33 2005544 [22] Ta H Q, Mendes R G, Liu Y, Yang X Q, Luo J P, Bachmatiuk A, Gemming T, Zeng M Q, Fu L, Liu L J and Rümmeli M H 2021 Adv. Sci.8 2100619 [23] Chahal S, Kauzlarich S M and Kumar P 2021 ACS Materials Lett.3 631 [24] Xie H G, Li Z, Cheng L, Haidry A A, Tao J, Xu Y, Xu K and Ou J Z 2022 iScience25 103598 [25] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G and Marzari N 2018 Nat. Nanotechnol.13 246 [26] Yang T, Song T T, Callsen M, Zhou J, Chai J W, Feng Y P, Wang S J and Yang M 2019 Adv. Mater. Interfaces6 1801160 [27] Bandyopadhyay A, Frey N C, Jariwala D and Shenoy V B 2019 Nano Lett.19 7793 [28] Friedrich R, Ghorbani-Asl M, Curtarolo S and Krasheninnikov A V 2022 Nano Lett.22 989 [29] Quang H T, Bachmatiuk A, Dianat A, Ortmann F, Zhao J, Warner J H, Eckert J, Cunniberti G and Rümmeli M H 2015 ACS Nano9 11408 [30] Yin K B, Zhang Y Y, Zhou Y L, Sun L T, Chisholm M F, Pantelides S T and Zhou W 2017 2D Mater.4 011001 [31] Zhang B Y, Xu K, Yao Q F, Jannat A, Ren G H, Field M R, Wen X M, Zhou C H, Zavabeti A and Ou J Z 2021 Nat. Mater.20 1073 [32] Skomski R, Wei X H and Sellmyer D J 2008 J. Appl. Phys.103 07C908 [33] Deng H X, Li J B, Li S S, Xia J B, Walsh A and Wei S H 2010 Appl. Phys. Lett.96 162508 [34] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [35] Kresse G and Furthmüller J 1996 Comput. Mater. Sci.6 15 [36] Sandratskii L M and Guletskii P G 1986 J. Phys. F: Met. Phys.16 L43 [37] Sandratskii L M 1991 J. Phys.: Condens. Matter3 8565 [38] Blöchl P E 1994 Phys. Rev. B50 17953 [39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [40] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B57 1505 [41] van Elp J, Wieland J L, Eskes H, Kuiper P, Sawatzky G A, de Groot F M F and Turner T S 1991 Phys. Rev. B44 6090 [42] Togo A and Tanaka I 2015 Scr. Mater.108 1 [43] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B47 1651 [44] Xu C S, Chen P, Tan H X, Yang Y R, Xiang H J and Bellaiche L 2020 Phys. Rev. Lett.125 037203 [45] Lin X, Lu J C, Shao Y, et al. 2017 Nat. Mater.16 717 [46] Dai Z H, Liu L Q and Zhang Z 2019 Adv. Mater.31 1805417 [47] Nguyen V H, Nguyen H V, Saint-Martin J and Dollfus P 2015 Nanotechnology26 115201 [48] Kramer E, van Dorp J, van Leeuwen R and Venstra W J 2015 Appl. Phys. Lett.107 091903 [49] Wang Y, Guo Y L, Zeng C X, Yang D Y, Zhang Y, Wu L T, Wu Y Z, Hao J, Wang J L and Yang R S 2022 Nano Energy104 107983 [50] Xian J J, Wang C, Nie J H, Li R, Han M J, Lin J H, Zhang W H, Liu Z Y, Zhang Z M, Miao M P, Yi Y F, Wu S W, Chen X D, Han J B, Xia Z C, Ji W and Fu Y S 2022 Nat. Commun.13 257
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.