Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087506    DOI: 10.1088/1674-1056/acd522
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study

Qianqian Wang(王倩倩)1, Jianzhou Zhao(赵建洲)2,1,†, Weikang Wu(吴维康)3,1,‡, Yinning Zhou(周胤宁)4, Qile Li5,6, Mark T. Edmonds5,6, and Shengyuan A. Yang(杨声远)1
1. Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore;
2. Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology, Mianyang 621010, China;
3. Key Laboratory for Liquid--Solid Structural Evolution and Processing of Materials(Ministry of Education), Shandong University, Jinan 250061, China;
4. Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics Materials Engineering, University of Macau, Macau Special Administrative Region, China;
5. School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia;
6. ARC Centre for Future Low Energy Electronics Technologies, Monash University, Clayton, VIC 3800, Australia
Abstract  Layered magnetic materials, such as MnBi2Te4, have drawn much attention owing to their potential for realizing two-dimensional (2D) magnetism and possible topological states. Recently, FeBi2Te4, which is isostructural to MnBi2Te4, has been synthesized in experiments, but its detailed magnetic ordering and band topology have not been clearly understood yet. Here, based on first-principles calculations, we investigate the magnetic and electronic properties of FeBi2Te4 in bulk and 2D forms. We show that different from MnBi2Te4, the magnetic ground states of bulk, single-layer, and bilayer FeBi2Te4 all favor a 120° noncollinear antiferromagnetic ordering, and they are topologically trivial narrow-gap semiconductors. For the bilayer case, we find that a quantum anomalous Hall effect with a unit Chern number is realized in the ferromagnetic state, which may be achieved in experiment by an external magnetic field or by magnetic proximity coupling. Our work clarifies the physical properties of the new material system of FeBi2Te4 and reveals it as a potential platform for studying magnetic frustration down to 2D limit as well as quantum anomalous Hall effect.
Keywords:  FeBi2Te4      two-dimensional (2D) magnetism      noncollinear antiferromagnet      quantum anomalous Hall effect      first-principles calculation  
Received:  06 February 2023      Revised:  10 May 2023      Accepted manuscript online:  12 May 2023
PACS:  75.50.Ee (Antiferromagnetics)  
  73.43.-f (Quantum Hall effects)  
  31.15.A- (Ab initio calculations)  
  74.20.Pq (Electronic structure calculations)  
Fund: We acknowledge the funding support from the Singapore MOE AcRF 308 Tier 2 (Grant No.T2EP50220-0026). W. Wu acknowledges the funding support from Shandong Provincial Natural Science Foundation (Grant No.ZR2023QA012), and the Special Funding in the Project of Qilu Young Scholar Program of Shandong University. M. T. Edmonds acknowledges the funding support from Australian Research Council Future Fellowship (Grant No.FT220100290). Q. Li acknowledges the funding support from the AINSE postgraduate award. Y. Zhou acknowledges the funding support from the Research and Development Administration Office at the University of Macau (Grants Nos.MYRG2022-00088-IAPME and SRG2021-00003-IAPME).
Corresponding Authors:  Jianzhou Zhao, Weikang Wu     E-mail:  jzzhao@swust.edu.cn;weikang_wu@sdu.edu.cn

Cite this article: 

Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远) Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study 2023 Chin. Phys. B 32 087506

[1] Deng Y, Yu Y, Song Y, et al. 2018 Nature 563 94
[2] Gong C, Li L, Li Z, et al. 2019 Sci. Adv. 5 eaaw5685
[15] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401
[16] Otrokov M M, Rusinov Igor P, Blanco-Rey M, Hoffmann M, Yu V A, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett. 122 107202
[17] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416
[18] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[19] Zhu T, Bishop A J, Zhou T, et al. 2021 Nano Lett. 21 5083
[20] Zhou L, Tan Z, Yan D, Fang Z, Shi Y and Weng H 2020 Phys. Rev. B 102 085114
[21] Saxena A, Rani P, Nagpal V, Patnaik S, Felner I and Awana V P S 2020 Journal of Superconductivity and Novel Magnetism 33 2251
[22] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[27] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[28] Rollmann G, Rohrbach A, Entel P and Hafner J 2004 Phys. Rev. B 69 165107
[29] Kulik H J, Cococcioni M, Scherlis D A and Marzari N 2006 Phys. Rev. Lett. 97 103001
[30] Stefan G, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[31] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[32] Mostof A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[33] Wu Q, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[34] Yang S, Xu X, Zhu Y, et al. 2021 Phys. Rev. X 11 011003
[35] You J Y, Dong X J, Gu B and Su G 2021 Phys. Rev. B 103 104403
[36] Fei Z, Huang B, Malinowski P, et al. 2018 Nat. Mater. 17 778
[37] Huang B, Clark G, Klein D R, et al. 2018 Nat. Nanotechnol. 13 544
[38] Yu R, Qi X L, Bernevig A, Fang Z and Dai X 2011 Phys. Rev. B 84 075119
[39] Jungwirth T, Niu Q and MacDonald A H 2002 Phys. Rev. Lett. 88 207208
[40] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
[41] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[42] Onoda M and Nagaosa N 2002 J. Phys. Soc. Jpn. 71 19
[43] Song T, Cai X, Tu W Y, et al. 2018 Science 360 1214
[44] Li Q, Trang C X, Wu W, Hwang J, Cortie D, Medhekar N, Mo S K, Yang S A and Edmonds M T 2022 Adv. Mater. 34 2107520
[45] Webster L and Yan J A 2018 Phys. Rev. B 98 144411
[46] Li Y, Jiang Z, Li J, Xu S and Duan W 2019 Phys. Rev. B 100 134438
[47] Cui Q, Zhu Y, Liang J, Cui P and Yang H 2023 Phys. Rev. B 107 064422
[1] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[2] An artificial neural network potential for uranium metal at low pressures
Maosheng Hao(郝茂生) and Pengfei Guan(管鹏飞). Chin. Phys. B, 2023, 32(9): 098401.
[3] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[4] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[5] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[6] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[7] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[8] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[9] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[10] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[11] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[12] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[13] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[14] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[15] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
No Suggested Reading articles found!