Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107501    DOI: 10.1088/1674-1056/acd36a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality

Xue-Feng Zhang(张雪枫)1,†, Je-Ho Shim(沈帝虎)2,†, Xiao-Ping Ma(马晓萍)2,‡, Cheng Song(宋成)3, Haiming Yu(于海明)4, and Hong-Guang Piao(朴红光)1,2,§
1 Hubei Engineering Research Center of Weak Magnetic-Field Detection, China Three Gorges University, Yichang 443002, China;
2 Department of Physics, College of Science, Yanbian University, Yanji 133002, China;
3 Key Laboratory of Advanced Materials(MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
4 Fert Beijing Institute, School of Integrated Circuit Science and Engineering, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China
Abstract  We investigate asymmetric spin wave scattering behaviors caused by vortex chirality in a cross-shaped ferromagnetic system by using the micromagnetic simulations. In the system, four scattering behaviors are found: (i) asymmetric skew scattering, depending on the polarity of vortex core, (ii) back scattering (reflection), depending on the vortex core stiffness, (iii) side deflection scattering, depending on structural symmetry of the vortex circulation, and (iv) geometrical scattering, depending on waveguide structure. The first and second scattering behaviors are attributed to nonlinear topological magnon spin Hall effect related to magnon spin-transfer torque effect, which has value for magnonic exploration and application.
Keywords:  magnonics      magnetic vortex      spin wave      magnetic chirality  
Received:  09 March 2023      Revised:  08 May 2023      Accepted manuscript online:  09 May 2023
PACS:  75.30.Ds (Spin waves)  
  75.40.Gb (Dynamic properties?)  
  75.78.Cd (Micromagnetic simulations ?)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
Fund: Project supported by the Basic Science Research Program of the National Research Foundation of Korea (Grant No. 2021R1F1A1050539), the Yanbian University Research Project (Grant No. 482022104), and the Yichang Natural Science Research Project (Grant No. A22-3-010).
Corresponding Authors:  Xiao-Ping Ma, Hong-Guang Piao     E-mail:  xpma1222@ybu.edu.cn;hgpiao@ybu.edu.cn

Cite this article: 

Xue-Feng Zhang(张雪枫), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), Cheng Song(宋成), Haiming Yu(于海明), and Hong-Guang Piao(朴红光) Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality 2023 Chin. Phys. B 32 107501

[1] Kevrekidis P G, Maraver J C and Saxena A 2020 Emerging Frontiers in Nonlinear Science (New York: Springer) pp. 7-10
[2] Lee O, Yamamoto K, Umeda M, Zollitsch C W, Elyasi M, Kikkawa T, Saitoh E, Bauer G E and Kurebayashi H 2023 Phys. Rev. Lett. 130 046703
[3] Barman A, Gubbiotti G, Ladak S, et al. 2021 J. Phys.: Condens. Matter 33 413001
[4] Yu H, Xiao J and Schultheiss H 2021 Phys. Rep. 905 1
[5] Garcia S F, Borys P, Soucaille R, Adam J P, Stamps R L and Kim J V 2015 Phys. Rev. Lett. 114 247206
[6] Wang Z, Yuan H Y, Cao Y and Yan P 2022 Phys. Rev. Lett. 129 107203
[7] Li Z, Ma M, Chen Z, Xie K and Ma F 2022 J. Appl. Phys 132 210702
[8] Guslienko K Y, Ivanov B A, Novosad V, Otani Y, Shima H and Fukamichi K 2002 J. Appl. Phys. 91 8037
[9] Park H K, Lee J H, Yang J and Kim S K 2020 J. Appl. Phys. 127 183906
[10] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453
[11] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001
[12] Liu C, Chen J, Liu T, et al. 2018 Nat. Commun. 9 738
[13] Razdolski I, Alekhin A, Ilin N, Meyburg J P, Roddatis V, Diesing D, Bovensiepen U and Melnikov A 2017 Nat. Commun. 8 15007
[14] Mansfeld S, Topp J, Martens K, Toedt J N, Hansen W, Heitmann D and Mendach S 2012 Phys. Rev. Lett. 108 047204
[15] Toedt J N, Mundkowski M, Heitmann D, Mendach S and Hansen W 2016 Sci. Rep. 6 33169
[16] Papp Á, Porod W, Csurgay Á I and Csaba G 2017 Sci. Rep. 7 9245
[17] Balinskiy M, Chiang H, Gutierrez D and Khitun A 2021 Appl. Phys. Lett. 118 242402
[18] Lan J, Yu W, Wu R and Xiao J 2015 Phys. Rev. X 5 041049
[19] Szulc K, Graczyk P, Mruczkiewicz M, Gubbiotti G and Krawczyk M 2020 Phys. Rev. Appl. 14 034063
[20] Lee K S and Kim S K 2008 J. Appl. Phys. 104 053909
[21] Chen J, Yu H and Gubbiotti G 2021 J. Phys. D: Appl. Phys. 55 123001
[22] Wang H, Chen J, Liu T, Zhang J, Baumgaertl K, Guo C, Li Y, Liu C, Che P, Tu S, Liu S, Gao P, Han X, Yu D, Wu M, Grundler D and Yu H 2020 Phys. Rev. Lett. 124 027203
[23] Gladii O, Haidar M, Henry Y, Kostylev M and Bailleul M 2016 Phys. Rev. B 93 054430
[24] Kwon J H, Yoon J, Deorani P, Lee J M, Sinha J, Lee K J, Hayashi M and Yang H 2016 Sci. Adv. 2 e1501892
[25] Albisetti E, Petti D, Sala G, Silvani R, Finizio S, Wintz S, Caló A, Zheng X, Raabe J, Riedo E and Bertacco R 2018 Commun. Phys. 1 56
[26] Fernández-Pacheco A, Streubel R, Fruchart O, Hertel R, Fischer P and Cowburn R P 2017 Nat. Commun. 8 15756
[27] Ma X P, Zheng J, Piao H G, Kim D H and Fischer P 2020 Appl. Phys. Lett. 117 062402
[28] Mayr S, Flajšman L, Finizio S, Hrabec A, Weigand M, Förster J, Stoll H, Heyderman L J, Urbánek M, Wintz S and Raabe J 2021 Nano Lett. 21 1584
[29] Chen J, Hu J and Yu H 2021 ACS Nano 15 4372
[30] Wintz S, Tiberkevich V, Weigand M, Raabe J, Lindner J, Erbe A, Slavin A and Fassbender J 2016 Nat. Nanotechnol. 11 948
[31] Chang L J, Chen J, Qu D, Tsai L Z, Liu Y F, Kao M Y, Liang J Z, Wu T S, Chuang T M, Yu H and Lee S F 2020 Nano Lett. 20 3140
[32] Kammerer M, Weigand M, Curcic M, Noske M, Sproll M, Vansteenkiste A, Waeyenberge B V, Stoll H, Woltersdorf G, Back C H and Schuetz G 2011 Nat. Commun. 2 279
[33] Ma X P, Yang H, Li C, Song C and Piao H G 2021 Chin. Phys. Lett. 38 127501
[34] Park J P and Crowell P A 2005 Phys. Rev. Lett. 95 167201
[35] Sproll M, Noske M, Bauer H, Kammerer M, Gangwar A, Dieterle G, Weigand M, Stoll H, Woltersdorf G, Back C H and Schütz G 2014 Appl. Phys. Lett. 104 012409
[36] Ma X P, Cai M X, Li P, Shim J H, Piao H G and Kim D H 2020 J. Magn. Magn. Mater. 502 166481
[37] Uhlíř V, Urbánek M, Hladík L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E and Šikola T 2013 Nat. Nanotech. 8 341
[38] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia S F and Van Waeyenberge B 2014 AIP Adv. 4 107133
[39] Nanayakkara K, Jacob A P and Kozhanov A 2015 J. Appl. Phys. 118 163904
[40] Li S, Xia J, Zhang X, Ezawa M, Kang W, Liu X, Zhou Y and Zhao W 2018 Appl. Phys. Lett. 112 142404
[41] Shim J H, Piao H G, Lee S H, Oh S K, Yu S C, Han S K and Kim D H 2011 Appl. Phys. Lett. 99 142505
[42] Shim J H, Piao H G and Kim D H 2014 J. Appl. Phys. 115 17D132
[43] Schütte C and Garst M 2014 Phys. Rev. B 90 094423
[44] Schütte C, Iwasaki J, Rosch A and Nagaosa N 2014 Phys. Rev. B 90 174434
[45] Mochizuki M, Yu X Z, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y and Nagaosa N 2014 Nat. Mater. 13 241
[46] Lan J and Xiao J 2021 Phys. Rev. B 103 054428
[47] Gao Z, Wang F, Zhao X, Wang T, Hu J and Yan P 2023 arXiv:2212.01172 [cond-mat.mes-hall]
[48] Jin Z, Yao X, Wang Z, Yuan H Y, Zeng Z, Cao Y and Yan P 2023 arXiv:2301.03211 [cond-mat.mes-hall]
[1] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[2] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[3] Nonlinear three-magnon scattering in low-damping La0.67Sr0.33MnO3 thin films
Yuelin Zhang(张跃林), Lutong Sheng(盛路通), Jilei Chen(陈济雷), Jie Wang(王婕), Zengtai Zhu(朱增泰), Rundong Yuan(袁润东), Jingdi Lu(鲁京迪), Hanchen Wang(王涵晨), Sijie Hao(郝思洁), Peng Chen(陈鹏), Guoqiang Yu(于国强), Xiufeng Han(韩秀峰), and Haiming Yu(于海明). Chin. Phys. B, 2023, 32(10): 107505.
[4] Eigenstates and temporal dynamics in cavity optomagnonics
Yun-Jing Ding(丁云静) and Yang Xiao(肖杨). Chin. Phys. B, 2023, 32(10): 107601.
[5] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[6] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[7] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[8] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[9] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[10] Magnon bands in twisted bilayer honeycomb quantum magnets
Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平). Chin. Phys. B, 2021, 30(7): 077505.
[11] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[12] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[13] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[14] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[15] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
No Suggested Reading articles found!