Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 108102    DOI: 10.1088/1674-1056/accff3
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ferroelectricity of pristine Hf0.5Zr0.5O2 films fabricated by atomic layer deposition

Luqiu Chen(陈璐秋)1,2,†, Xiaoxu Zhang(张晓旭)1,2,†, Guangdi Feng(冯光迪)1,2, Yifei Liu(刘逸飞)1, Shenglan Hao(郝胜兰)1, Qiuxiang Zhu(朱秋香)1,2,3,‡, Xiaoyu Feng(冯晓钰)1, Ke Qu(屈可)1, Zhenzhong Yang(杨振中)1,§, Yuanshen Qi(祁原深)4, Yachin Ivry5, Brahim Dkhil6, Bobo Tian(田博博)1,2,¶, Junhao Chu(褚君浩)1,7,8, and Chungang Duan(段纯刚)1,9
1 Key Laboratory of Polar Materials and Devices(MOE), Ministry of Education, Shanghai Center of Brain-inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China;
2 Zhejiang Laboratory, Hangzhou 310000, China;
3 Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China;
4 Department of Materials Sciences and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China;
5 Department of Materials Science and Engineering, Solid-State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
6 Université Paris-Saclay, CentraleSupélec, CNRS-UMR 8580, Laboratoire Structures, Propriétés et Modélisation des Solides, Gif-sur-Yvette 91190, France;
7 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
8 Institute of Optoelectronics, Fudan University, Shanghai 200433, China;
9 Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi 030006, China
Abstract  Hafnium-based ferroelectric films, remaining their ferroelectricity down to nanoscale thickness, present a promising application for low-power logic devices and nonvolatile memories. It has been appealing for researchers to reduce the required temperature to obtain the ferroelectric phase in hafnium-based ferroelectric films for applications such as flexible and wearable electronics. This work demonstrates that a remanent polarization ($P_{\rm r}$) value of $> 5 $ μC/cm$^{2}$ can be obtained in as-deposited Hf$_{0.5}$Zr$_{0.5}$O$_{2}$ (HZO) films that are fabricated by thermal atomic layer deposition (TALD) under low temperature of 250 ℃. The ferroelectric orthorhombic phase (o-phase) in the as-deposited HZO films is detected by scanning transmission electron microscopy (STEM). This low fabrication temperature further extends the compatibility of ferroelectric HZO films to flexible electronics and avoids the cost imposed by following high-temperature annealing treatments.
Keywords:  Hf0.5Zr0.5O2 (HZO)      ferroelectric      orthorhombic      without annealing  
Received:  25 March 2023      Revised:  22 April 2023      Accepted manuscript online:  25 April 2023
PACS:  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  77.55.fp (Other ferroelectric films)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1200700), the National Natural Science Foundation of China (Grant Nos. T2222025 and 62174053), the Open Research Projects of Zhejiang Laboratory (Grant No. 2021MD0AB03), the Shanghai Science and Technology Innovation Action Plan (Grant Nos. 21JC1402000 and 21520714100), the Guangdong Provincial Key Laboratory Program (Grant No. 2021B1212040001), and the Fundamental Research Funds for the Central Universities. Yachin Ivry acknowledges support from the Zuckerman STEM Leadership Program as well as from Pazy Research Foundation (Grant No. 149-2020).
Corresponding Authors:  Qiuxiang Zhu, Zhenzhong Yang, Bobo Tian     E-mail:  qxzhu@clpm.ecnu.edu.cn;zzyang@phy.ecnu.edu.cn;bbtian@ee.ecnu.edu.cn

Cite this article: 

Luqiu Chen(陈璐秋), Xiaoxu Zhang(张晓旭), Guangdi Feng(冯光迪), Yifei Liu(刘逸飞), Shenglan Hao(郝胜兰), Qiuxiang Zhu(朱秋香), Xiaoyu Feng(冯晓钰), Ke Qu(屈可), Zhenzhong Yang(杨振中), Yuanshen Qi(祁原深), Yachin Ivry, Brahim Dkhil, Bobo Tian(田博博), Junhao Chu(褚君浩), and Chungang Duan(段纯刚) Ferroelectricity of pristine Hf0.5Zr0.5O2 films fabricated by atomic layer deposition 2023 Chin. Phys. B 32 108102

[1] Niu X, Tian B, Zhu Q, Dkhil B and Duan C 2022 Appl. Phys. Rev. 9 021309
[2] Cui B, Fan Z, Li W, Chen Y, Dong S, Tan Z, Cheng S, Tian B, Tao R, Tian G, Chen D, Hou Z, Qin M, Zeng M, Lu X, Zhou G, Gao X and Liu J M 2022 Nat. Commun. 13 1707
[3] Ma C, Luo Z, Huang W, Zhao L, Chen Q, Lin Y, Liu X, Chen Z, Liu C, Sun H, Jin X, Yin Y and Li X 2020 Nat. Commun. 11 1439
[4] Müller J, Yurchuk E, Schlösser T, Paul J, Hoffmann R, Müller S, Martin D, Slesazeck S, Polakowski P, Sundqvist J, Czernohorsky M, Seidel K, Kücher P, Boschke R, Trentzsch M, Gebauer K, Schröder U and Mikolajick T 2012 Symposium on VLSI Technology, June 12-14, 2012, Honolulu, USA, p. 25
[5] Müller J, Bösckee T S, Müllera S, et al. 2013 IEEE International Electron Devices Meeting, December 9-11, 2013, Washington, USA, pp. 10.8.1
[6] Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Muller J, Kersch A, Schroeder U, Mikolajick T and Hwang C S 2015 Adv. Mater. 27 1811
[7] Böscke T S, Müller J, Bräuhaus D, Schröder U and Böttger U 2011 Appl. Phys. Lett. 99 102903
[8] Kim Y, Woo J, Im S, Lee Y, Kim J H, Im J P, Suh D, Yang S M, Yoon S M and Moon S E 2020 Curr. Appl. Phys. 20 1441
[9] Bouaziz J, Romeo P R, Baboux N and Vilquin B 2019 ACS Appl. Electron. 1 1740
[10] Zhang Y, Xu J, Zhou D, Wang H, Lu W and Choi C 2018 Chin. Phys. B 27 48103
[11] Zhang Z, Hsu S L, Stoica V A, Paik H, Parsonnet E, Qualls A, Wang J, Xie L, Kumari M, Das S, Leng Z, McBriarty M, Proksch R, Gruverman A, Schlom D G, Chen L Q, Salahuddin S, Martin L W and Ramesh R 2021 Adv. Mater. 33 2006089
[12] Starschich S, Griesche D, Schneller T, Waser R and Böttger U 2014 Appl. Phys. Lett. 104 202903
[13] Wei A, Chen C, Tang L, Zhou K and Zhang D 2018 J. Alloys Compd. 731 546
[14] Wang J, Zhou D, Dong W, Yao Y, Sun N, Ali F, Hou X and Liu F 2021 Adv. Electron. Mater. 7 2000585
[15] Sang X, Grimley E D, Schenk T, Schroeder U and LeBeau J M 2015 Appl. Phys. Lett. 106 162905
[16] Muller J, Boscke T S, Schroder U, Mueller S, Brauhaus D, Bottger U, Frey L and Mikolajick T 2012 Nano Lett. 12 4318
[17] Kim H B, Jung M, Oh Y, Lee S W, Suh D and Ahn J H 2021 Nanoscale 13 8524
[18] Park M H, Kim H J, Kim Y J, Lee W, Moon T and Hwang C S 2013 Appl. Phys. Lett. 102 8524
[19] Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Hyun S D, Mikolajick T, Schroeder U and Hwang C S 2017 Nanoscale 10 716
[20] Florent K, Lavizzari S, Popovici M, Di Piazza L, Celano U, Groeseneken G and Van Houdt J 2017 J. Appl. Phys. 121 204103
[21] Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U and Mikolajick T 2012 Adv. Funct. Mater. 22 2412
[22] Ma X, Yang H, Xiang J, Wang X, Wang W, Zhang J, Yin H, Zhu H and Zhao C 2017 Chin. Phys. B 26 27701
[23] Lomenzo P D, Takmeel Q, Moghaddam S and Nishida T 2016 Thin Solid Films 615 139
[24] Böscke T S, Teichert S, Bräuhaus D, Müller J, Schröder U, Böttger U and Mikolajick T 2011 Appl. Phys. Lett. 99 112901
[25] Chernikova A G, Kuzmichev D S, Negrov D V, Kozodaev M G, Polyakov S N and Markeev A M 2016 Appl. Phys. Lett. 108 242905
[26] Schroeder U, Richter C, Park M H, Schenk T, Pesic M, Hoffmann M, Fengler F P, Pohl D, Rellinghaus B and Zhou C 2018 Inorg. Chem. 57 2752
[27] Richter C, Schenk T, Park M H, Tscharntke F A, Grimley E D, LeBeau J M, Zhou C, Fancher C M, Jones J L, Mikolajick T and Schroeder U 2017 Adv. Electron. Mater. 3 1700131
[28] Kim T, Park J, Cheong B H and Jeon S 2018 Appl. Phys. Lett. 112 092906
[29] Lehninger D, Olivo R, Ali T, Lederer M, Kämpfe T, Mart C, Biedermann K, Kühnel K, Roy L, Kalkani M and Seidel K 2020 Phys. Status Solidi (a) 217 1900840
[30] Yu H, Chung C C, Shewmon N, Ho S, Carpenter J H, Larrabee R, Sun T, Jones J L, Ade H, O'Connor B T and So F 2017 Adv. Funct. Mater. 27 1700461
[31] Persson A E O, Athle R, Littow P, Persson K M, Svensson J, Borg M and Wernersson L E 2020 Appl. Phys. Lett. 116 062902
[32] Onaya T, Nabatame T, Sawamoto N, Ohi A, Ikeda N, Nagata T and Ogura A 2019 Microelectron. Eng. 215 111013
[33] Chen K Y, Chen P H and Wu Y H 2017 31st Symposium on VLSI Circuits, June 5-9, 2017, Kyoto, Japan, p. T84
[34] Qi Y, Xu X, Krylov I and Eizenberg M 2021 Appl. Phys. Lett. 118 032906
[35] Park M H, Kim H J, Kim Y J, Lee W, Moon T and Hwang C S 2013 Appl. Phys. Lett. 102 242905
[36] Fields S S, Smith S W, Ryan P J, Jaszewski S T, Brummel I A, Salanova A, Esteves G, Wolfley S L, Henry M D, Davids P S and Ihlefeld J F 2020 ACS Appl. Mater. Interfaces 12 26577
[37] Kao Y C, Peng H K, Wang Y K, Wu K A, Wang C Y, Lin Y D, Lai T C, Wu Y H, Lin C Y, Hsiao S W, Lee M H and Wu P J 2022 ACS Appl. Electron. Mater. 4 3897
[38] Zheng Y, Zhong C, Zheng Y, Gao Z, Cheng Y, Zhong Q, Liu C, Wang Y, Qi R, Huang R and Lyu H 2021 Symposium on VLSI Technology, June 13-19, Kyoto, Japan, p. 1
[39] Pešić M, Fengler F P G, Larcher L, Padovani A, Schenk T, Grimley E D, Sang X, LeBeau J M, Slesazeck S, Schroeder U and Mikolajick T 2016 Adv. Funct. Mater. 26 4601
[40] Zhou D, Xu J, Li Q, Guan Y, Cao F, Dong X, Müller J, Schenk T and Schröder U 2013 Appl. Phys. Lett. 103 192904
[41] Fields S S, Smith S W, Jaszewski S T, Mimura T, Dickie D A, Esteves G, David H M, Wolfley S L, Davids P S and Ihlefeld J F 2021 J. Appl. Phys. 130 134101
[42] Li Y, Zhu H, Li R, Liu J, Xiang J, Xie N, Huang Z, Fang Z, Liu X and Zhou L 2022 Chin. Phys. B 31 88502
[43] Schroeder U, Materano M, Mittmann T, Lomenzo P D, Mikolajick T and Toriumi A 2019 J. Appl. Phys. 58 SL0801
[1] Impact of annealing temperature on the ferroelectric properties of W/Hf0.5Zr0.5O2/W capacitor
Dao Wang(王岛), Yan Zhang(张岩), Yongbin Guo(郭永斌), Zhenzhen Shang(尚真真), Fangjian Fu(符方健), and Xubing Lu(陆旭兵). Chin. Phys. B, 2023, 32(9): 097701.
[2] Charge trapping effect at the interface of ferroelectric/interlayer in the ferroelectric field effect transistor gate stack
Xiaoqing Sun(孙晓清), Hao Xu(徐昊), Junshuai Chai(柴俊帅), Xiaolei Wang(王晓磊), and Wenwu Wang(王文武). Chin. Phys. B, 2023, 32(8): 087701.
[3] Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋). Chin. Phys. B, 2023, 32(5): 056803.
[4] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
[5] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[8] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[9] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[10] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[11] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[12] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[13] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[14] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[15] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
No Suggested Reading articles found!