Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 020504    DOI: 10.1088/1674-1056/abbbfd
GENERAL Prev   Next  

Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model

Chundong Wang(王春栋)1,2, Ying Wu(吴瑛)1,†, Yulin Cao(曹喻霖)3,‡, and Xinying Xue(薛新英)4,§
1 College of Life Science, Tarim University, Alaer 843300, China; 2 School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; 3 Physics Laboratory, Industrial Training Center, Shenzhen Polytechnic, Shenzhen, China; 4 Department of Physics, College of Science, Shihezi University, Xinjiang 832003, China
Abstract  The dynamic phase transition properties for ferroelectric nanotube under a spin-1/2 transverse Ising model are studied under the effective field theory (EFT) with correlations. The temperature effects on the pseudo-spin systems are unveiled in three-dimensional (3-D) and two-dimensional (2-D) phase diagrams. Moreover, the dynamic behaviors of exchange interactions on the 3-D and 2-D phase transitions under high temperature are exhibited. The results present that it is hard to obtain pure ferroelectric phase under high temperature; that is, the vibration of orderly pseudo-spins cannot be eliminated completely.
Keywords:  ferroelectric nanotube      three-dimensional (3-D) phase diagram      Ising model      dynamic phase transitions  
Received:  26 July 2020      Revised:  22 August 2020      Accepted manuscript online:  28 September 2020
PACS:  05.50.+q (Lattice theory and statistics)  
  77.80.B- (Phase transitions and Curie point)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFE0120500), the National Natural Science Foundation of China (Grant No. 51972129), the South Xinjiang Innovation and Development Program of Key Industries of Xinjiang Production and Construction Corps (Grant No. 2020DB002), the Fundamental Research Funds for the Central Universities, China (Grant Nos. HUST 2018KFYYXJJ051 and 2019KFYXMBZ076), and Shenzhen Fundamental Research Fund (Grant No. JCYJ20190813172609404). C.D.W. acknowledges the Hubei "Chu-Tian Young Scholar" Program.
Corresponding Authors:  Corresponding author. E-mail: wuyingjuyuan@163.com Corresponding author. E-mail: caoyulin@szpt.edu.cn §Corresponding author. E-mail: yyingxx@163.com   

Cite this article: 

Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英) Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model 2021 Chin. Phys. B 30 020504

1 Scott J F and Dearaujo C A P 1989 Science 246 1400
2 Dearaujo C A P, Cuchiaro J D and McMillan L D 1995 Nature 374 627
3 Vrejoiu I, Alexe M and Hesse D 2008 Adv. Funct. Mater. 18 3892
4 Zhang X D, Kwon D and Kim B G 2008 Appl. Phys. Lett. 92 082906
5 Suchomel M R and Davies P K 2005 Appl. Phys. Lett. 86 262905
6 Zhang L, Chen J and Zhao H 2013 Dalton Trans. 42 585
7 Chatterjee I 1985 J. Phys. C 18 L1097
8 Wang Y Q and Li Z Y 1994 J. Phys.: Condens. Matter 6 10067
9 de Gennes P G 1963 Solid State Commun. 6 132
10 Wang C D, Teng B H and Zhang X J 2008 Mod. Phys. Lett. 22 3099
11 Wang C D, Teng B H and Zhang X J 2009 Physica A 388 1472
12 Wang C D, Teng B H and Lu Z Z 2011 Commun. Theor. Phys. 55 1024
13 Wang C D, Teng B H and Kwok S Y 2011 Commun. Theor. Phys. 56 1057
14 Wang C D, Teng B H and Teng Y F 2010 Commun. Theor. Phys. 54 756
15 Lu Z X, Teng B H and Lu X H 2009 Solid State Commun. 149 1176
16 Wang B, Huang H L, Sun Z Y and Kou S P 2012 Chin. Phys. Lett. 29 120301
17 Meng Q K, Feng D T, Gao X T and Mei Y X 2012 Chin. Phys. Lett. 29 120502
18 Teng B H and Sy H K 2005 Europhys. Lett. 72 823
19 Michael Th, Trimper S and Wesselinowa J M 2007 Phys. Rev. B 76 094107
20 Wesselinowa J M 2002 Solid State Comm. 121 489
21 Wesselinowa J M and Trimper S 2002 Int. J. Mod. Phys. B 16 473
22 Wesselinowa J M 2002 Phys. Status Solidi B 231 187
23 Kaneyoshi T 2003 J. Magn. Magn. Mater. 264 30
24 Kaneyoshi T 2003 Phys. Status Solidi B 237 592
25 Kaneyoshi T 2003 Physica A 319 355
26 Wang C D, Lu Z Z, Yuan W X, Kwok S Y and Teng B H 2011 Phys. Lett. A 375 3405
27 Kaneyoshi T 2012 Physica B 407 4358
28 Kaneyoshi T 2012 Phys. Lett. A 376 2352
29 Divyamani B G and Sudha 2013 Chin. Phys. Lett. 30 120301
30 Kaneyoshi T 2011 Solid State Commun. 151 1528
31 Kaneyoshi T 2011 Physica A 390 3697
32 Zhang Q Y, Sun D K, Zhang and Y F and Zhu M F 2016 Chin. Phys. B 25 066401
[1] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[2] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
[3] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[4] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[5] Entanglement in a two-spin system with long-range interactions
Soltani M R, Mahdavifar S, Mahmoudi M. Chin. Phys. B, 2016, 25(8): 087501.
[6] The spin dynamics of the random transverse Ising chain with a double-Gaussian disorder
Liu Zhong-Qiang (刘中强), Jiang Su-Rong (姜素蓉), Kong Xiang-Mu (孔祥木). Chin. Phys. B, 2014, 23(8): 087505.
[7] Nonequilibrium behavior of the kinetic metamagnetic spin-5/2 Blume-Capel model
Ümüt Temizer. Chin. Phys. B, 2014, 23(7): 070511.
[8] Ising model on evolution networks and its application on opinion formation
Zhu Xiao-Long (朱小龙), Zhang Hai-Tian (张海天), Sang Jian-Ping (桑建平), Huang Sheng-You (黄胜友), Zou Xian-Wu (邹宪武). Chin. Phys. B, 2014, 23(6): 068701.
[9] Comment on ‘Mathematical structure of the three-dimensional (3D)Ising model’
Jacques H. H. Perk. Chin. Phys. B, 2013, 22(8): 080508.
[10] Mathematical structure of the three-dimensional (3D) Ising model
Zhang Zhi-Dong (张志东). Chin. Phys. B, 2013, 22(3): 030513.
[11] Dynamic compensation temperature in kinetic spin-5/2 Ising model on hexagonal lattice
Ümüt Temizer, Ayşegül Özkılıç. Chin. Phys. B, 2013, 22(3): 037501.
[12] Entanglement and quantum phase transition in the Heisenberg-Ising model
Tan Xiao-Dong (谭小东), Jin Bai-Qi (金柏琪), Gao Wei (高微). Chin. Phys. B, 2013, 22(2): 020308.
[13] Simulations of the flipping images and microparameters of molecular orientations in liquids according to molecule string model
Wang Li-Na (王丽娜), Zhao Xing-Yu (赵兴宇), Zhang Li-Li (张丽丽), Huang Yi-Neng (黄以能 ). Chin. Phys. B, 2012, 21(8): 086403.
[14] An extended chain Ising model and its Glauber dynamics
Zhao Xing-Yu(赵兴宇), Huang Xin-Ru(黄心茹), Fan Xiao-Hui(樊小辉), and Huang Yi-Neng(黄以能) . Chin. Phys. B, 2012, 21(2): 027501.
[15] The hysteresis loops of a ferroelectric bilayer film with surface transition layers
Cui Lian(崔莲), Lü Tian-Quan(吕天全), Sun Pu-Nan(孙普男), and Xue Hui-Jie(薛惠杰). Chin. Phys. B, 2010, 19(7): 077701.
No Suggested Reading articles found!