|
|
Activated dissociation of H2 on the Cu(001) surface: The role of quantum tunneling |
Xiaofan Yu(于小凡)1,2,†, Yangwu Tong(童洋武)1,2,†, and Yong Yang(杨勇)1,2,‡ |
1 Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The activation and dissociation of hydrogen molecules (H2) on the Cu(001) surface are studied theoretically. Using first-principles calculations, the activation barrier for the dissociation of H2 on Cu(001) is determined to be ~ 0.59 eV in height. It is found that the electron transfer from the copper substrate to H2 plays a key role in the activation and breaking of the H-H bond, and the formation of the Cu-H bonds. Two stationary states are identified at around the critical height of bond breaking, corresponding to the molecular and the dissociative states, respectively. Using the transfer matrix method, we also investigate the role of quantum tunneling in the dissociation process along the minimum energy pathway (MEP), which is found to be significant at or below room temperature. At a given temperature, the tunneling contributions due to the translational and the vibrational motions of H2 are quantified for the dissociation process. Within a wide range of temperature, the effects of quantum tunneling on the effective barriers of dissociation and the rate constants are observed. The deduced energetic parameters associated with the thermal equilibrium and non-equilibrium (molecular beam) conditions are comparable to experimental data. In the low-temperature region, the crossover from classical to quantum regime is identified.
|
Received: 28 February 2023
Revised: 30 April 2023
Accepted manuscript online: 05 May 2023
|
PACS:
|
82.37.Np
|
(Single molecule reaction kinetics, dissociation, etc.)
|
|
82.65.+r
|
(Surface and interface chemistry; heterogeneous catalysis at surfaces)
|
|
68.43.-h
|
(Chemisorption/physisorption: adsorbates on surfaces)
|
|
66.35.+a
|
(Quantum tunneling of defects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474285 and 12074382). We are grateful to the staffs at the Hefei Branch of Supercomputing Center of Chinese Academy of Sciences, and the Hefei Advanced Computing Center for the support of supercomputing facilities. |
Corresponding Authors:
Yong Yang
E-mail: yyanglab@issp.ac.cn
|
Cite this article:
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇) Activated dissociation of H2 on the Cu(001) surface: The role of quantum tunneling 2023 Chin. Phys. B 32 108103
|
[1] Swart I, de Groot F M F, Weckhuysen B M, Gruene P, Meijer G and Fielicke A 2008 J. Phys. Chem. A 112 1139 [2] Lyu J Z, Andrey M L and Viktor N K 2019 Chin. Phys. B 28 098801 [3] Wang Y L, Chen Y H and Wang Y H 2020 Chin. Phys. B. 29 016801 [4] Salmeron M, Gale R J and Somorjai G A 1977 J. Chem. Phys. 67 5324 [5] Kang H C and Weinberg W H 1995 Chem. Rev. 95 667 [6] Anger G, Winkler A and Rendulic K D 1989 Surf. Sci. 220 1 [7] Besocke K, Krahl-Urban B and Wagner H 1977 Surf. Sci. 68 39 [8] Behm R J, Christmann K and Ertl G 1980 Surf. Sci. 99 320 [9] Jardin J P, Desjonquéres M C and Spanjaard D 1985 Surf. Sci. 162 224 [10] Balooch M, Cardillo M J, Miller D R and Stickney R E 1974 Surf. Sci. 46 358 [11] Tersoff J and Falicov L M 1981 Phys. Rev. B 24 754 [12] Shen X, Li Y, Liu X, Zhang D, Gao J and Liang T 2017 Phys. Chem. Chem. Phys. 19 3557 [13] Ferrin P, Kandoi S, Nilekar A U and Mavrikakis M 2012 Surf. Sci. 606 679 [14] Alexander C S and Pritchard J 1972 J. Chem. Soc., Faraday Trans. 1 68 202 [15] Rasmussen P B, Holmblad P M, Christoffersen H, Taylor P A and Chorkendorff I 1993 Surf. Sci. 287 79 [16] Sun Q, Xie J J and Zhang T 1995 Surf. Sci. 338 11 [17] Xie J J, Jiang P and Zhang K M 1994 J. Phys.: Condens. Matter 6 7217 [18] Xie J J, Jiang P and Zhang K M 1996 J. Chem. Phys. 104 9994 [19] Somers M F, McCormack D A, Kroes G J, Olsen R A, Baerends E J and Mowrey R C 2002 J. Chem. Phys. 117 6673 [20] Christmann K, Ertl G and Pignet T 1976 Surf. Sci. 54 365 [21] Hennig D, Wilke S, Löber R and Methfessel M 1993 Surf. Sci. 287 89 [22] Payne S H, Kreuzer H J, Frie W, Hammer L and Heinz K 1999 Surf. Sci. 421 279 [23] Smeets E W F, Voss J and Kroes G J 2019 J. Phys. Chem. A 123 5395 [24] Harris J and Andersson S 1985 Phys. Rev. Lett. 55 1583 [25] Harris J 1988 Appl. Phys. A 47 63 [26] Halstead D and Holloway S 1988 J. Chem. Phys. 88 7197 [27] Halstead D and Holloway S 1990 J. Chem. Phys. 93 2859 [28] Nielsen U, Halstead D and Holloway S 1990 J. Chem. Phys. 93 2879 [29] Darling G R and Holloway S 1994 J. Chem. Phys. 101 3268 [30] Brenig W 1994 Phys. Rev. Lett. 73 3121 [31] Kinnersley A D, Darling G R, Holloway S and Hammer B 1996 Surf. Sci. 364 219 [32] Wang Z S, Darling G R and Holloway S 2000 Surf. Sci. 458 63 [33] Dai J and Light J C 1997 J. Chem. Phys. 107 1676 [34] Dai J and Light J C 1998 J. Chem. Phys. 108 7816 [35] Miura Y, Kasai H and Diño W A 2002 J. Phys.: Condens. Matter. 14 L479 [36] Wiesenekker G, Kroes G J and Baerends E J 1996 J. Chem. Phys. 104 7344 [37] Kroes G J, Baerends E J and Mowrey R C 1997 Phys. Rev. Lett. 78 5383 [38] Kroes G J, Baerends E J and Mowrey R C 1997 J. Chem. Phys. 107 3309 [39] McCormack D A, Kroes G J, Olsen R A, Baerends E J and Mowrey R C 1999 J. Chem. Phys. 110 7008 [40] McCormack D A, Kroes G J, Olsen R A, Baerends E J and Mowrey R C 1999 Phys. Rev. Lett. 82 1410 [41] Olsen R A, Busnengo H F, Salin A, Somers M F, Kroes G J and Baerends E J 2002 J. Chem. Phys. 116 3841 [42] Díaz C, Pijper E, Olsen R A, Busnengo H F, Auerbach D J and Kroes G J 2009 Science 326 832 [43] Sementa L, Wijzenbroek M, van Kolck B J, Somers M F, Al-Halabi A, Busnengo H F, Olsen R A, Kroes G J, Rutkowski M, Thewes C, Kleimeier N F and Zacharias H 2013 J. Chem. Phys. 138 044708 [44] Marashdeh A, Casolo S, Sementa L, Zacharias H and Kroes G J 2013 J. Phys. Chem. C 117 8851 [45] Kroes G J 2015 J. Phys. Chem. Lett. 6 4106 [46] Sharada S M, Bligaard T, Luntz A C, Kroes G J and Norskov J K 2017 J. Phys. Chem. C 121 19807 [47] Kroes G J 2021 Phys. Chem. Chem. Phys. 23 8962 [48] Jiang B and Guo H 2014 J. Chem. Phys. 141 034109 [49] Zhu L J, Zhang Y L, Zhang L, Zhou X Y and Jiang B 2020 Phys. Chem. Chem. Phys. 22 13958 [50] Lv S S, Liu X J and Shen X J 2022 Surf. Sci. 718 122015 [51] Markland T E and Ceriotti M 2018 Nat. Rev. Chem. 2 0109 [52] Ceriotti M, Fang W, Kusalik P G, McKenzie R H, Michaelides A, Morales M A and Markland T E 2016 Chem. Rev. 116 7529 [53] Yang Y and Kawazoe Y 2019 J. Phys. Chem. C 123 13804 [54] Bi C and Yang Y 2021 J. Phys. Chem. C 125 464 [55] Schreiner P R 2020 Trends Chem. 2 980 [56] Meisner J and Kästner J 2016 Angew. Chem. Int. Ed. 55 5400 [57] Tierney H L, Baber A E, Kitchin J R and Sykes E C H 2009 Phys. Rev. Lett. 103 246102 [58] Kyriakou G, Davidson E R M, Peng G, Roling L T, Singh S, Boucher M B, Marcinkowski M D, Mavrikakis M, Michaelides A and Sykes E C H 2014 ACS Nano 8 4827 [59] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [60] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [61] Perdew J P 1986 Phys. Rev. B 34 7406 [62] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [63] Blöchl P E 1994 Phys. Rev. B 50 17953 [64] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [65] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 [66] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [67] Baroni S and Resta R 1986 Phys. Rev. B 33 7017 [68] Schiff L I 1968 Quantum Mechanics (New York: McGraw-Hill) p. 268 [69] Bell R P 1980 The Tunnel Effect in Chemistry (London: Chapman and Hall) [70] Chen B W J and Mavrikakis M 2020 Catal. Sci. Technol. 10 671 [71] Yu M and Trinkle D R 2011 J. Chem. Phys. 134 064111 [72] Ebrahimi M, Guo S Y, McNab I R and Polanyi J C 2010 J. Phys. Chem. Lett. 1 2600 [73] Yang Y, Meng S and Wang E G 2006 J. Phys.: Condens. Matter 18 10165 [74] Luo Y R 2005 Experimental Data of Chemical Bond Energies (Beijing: Science Press) p. 4 [75] Chapman S, Garrett B C and Miller W H 1975 J. Chem. Phys. 63 2710 [76] Marcus R A and Coltrin M E 1977 J. Chem. Phys. 67 2609 [77] Garrett B C and Truhlar D G 1983 J. Chem. Phys. 79 4931 [78] Han E, Fang W, Stamatakis M, Richardson J O and Chen J 2022 J. Phys. Chem. Lett. 13 3173 [79] Cheng Y H, Zhu Y C, Li X Z and Fang W 2023 Chin. Phys. B 32 018201 [80] Büttiker M and Landauer R 1982 Phys. Rev. Lett. 49 1739 [81] Wang Z C 2000 Thermodynamics Statistical Physics, 3rd Ed. (Beijing: Higher Education Press) pp. 271-273 [82] Lauhon L J and Ho W 2000 Phys. Rev. Lett. 85 4566 [83] Sundell P G and Wahnström G 2004 Phys. Rev. B 70 081403 [84] Zheng C Z, Yeung C K, Loy M M and Xiao X 2006 Phys. Rev. Lett. 97 166101 [85] Cao G X, Nabighian E and Zhu X D 1997 Phys. Rev. Lett. 79 3696 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|