|
|
The growth and expansive applications of amorphous Ga2O3 |
Zhao-Ying Xi(奚昭颖)1, Li-Li Yang(杨莉莉)1,2,†, Lin-Cong Shu(舒林聪)1, Mao-Lin Zhang(张茂林)1,2, Shan Li(李山)1,2, Li Shi(史丽)3, Zeng Liu(刘增)1,2,4,‡, Yu-Feng Guo(郭宇锋)1,2, and Wei-Hua Tang(唐为华)1,2,§ |
1. Innovation Center for Gallium Oxide Semiconductor(IC-GAO), College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2. National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3. Key Laboratory for Organic Electronics and Information Displays(KLOEID) & Institute of Advanced Materials(IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 4. Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Ministry of Industry and Information Technology, Nanjing 211106, China |
|
|
Abstract As a promising ultra-wide bandgap semiconductor material, gallium oxide (Ga2O3) is attracting extensive attention of researchers due to its feasible growth process, appropriate bandgap of 4.4 eV-5.3 eV allowing for deep-ultraviolet (deep-UV) detection, good physical and chemical stability, high breakdown field strength and electron mobility, etc. Different from the strict processes for controllable crystalline Ga2O3 (usually refer to as stable monoclinic β-Ga2O3), amorphous Ga2O3 (a-Ga2O3) film can be prepared uniformly at low temperature on a large-area deposition substrate, suggesting great advantages such as low manufacturing cost and excellent flexibility, dispensing with high-temperature and high vacuum techniques. Thus, a-Ga2O3 extremely facilitates important applications in various applied fields. Therefore, in this concise review, we summarize several major deposition methods for a-Ga2O3 films, of which the characteristics are discussed. Additionally, potential methods to optimize the film properties are proposed by right of the inspiration from some recent studies. Subsequently, the applications of a-Ga2O3 thin films, e.g., in photodetectors, resistive random access memories (RRAMs) and gas sensors, are represented with a fruitful discussion of their structures and operating mechanisms.
|
Received: 04 April 2023
Revised: 20 April 2023
Accepted manuscript online: 24 April 2023
|
PACS:
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
47.54.Jk
|
(Materials science applications)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2022YFB3605404), the National Natural Science Foundation of China (Grant Nos.62204126 and 62204125), the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos.XK1060921119, XK1060921002, and XK1060921115), and the Open Fund of the Key Laboratory of Aerospace Information Materials and Physics (NUAA) MIIT. |
Corresponding Authors:
Li-Li Yang, Zeng Liu, Wei-Hua Tang
E-mail: liliyang@njupt.edu.cn;zengliu@njupt.edu.cn;whtang@njupt.edu.cn
|
Cite this article:
Zhao-Ying Xi(奚昭颖), Li-Li Yang(杨莉莉), Lin-Cong Shu(舒林聪), Mao-Lin Zhang(张茂林), Shan Li(李山), Li Shi(史丽), Zeng Liu(刘增), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华) The growth and expansive applications of amorphous Ga2O3 2023 Chin. Phys. B 32 088502
|
[1] Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450 [2] Spear W and Le Comber P 1975 Solid State Commun. 17 1193 [3] Anderson P W 1958 Phys. Rev. 109 1492 [4] Cohen M H, Fritzsche H and Ovshinsky S 1969 Phys. Rev. Lett. 22 1065 [5] Mott N F 1969 Philos. Mag. 19 835 [6] Davis E A and Mott N F 1970 Philos. Mag. 22 0903 [7] Anderson P W 1975 Phys. Rev. Lett. 34 953 [8] Nenashev A V, Oelerich J O, Greiner S H M, Dvurechenskii A V, Gebhard F and Baranovskii S D 2019 Phys. Rev. B 100 125202 [9] Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678 [10] Hirata A, Yamaguchi R, Kosugi T, Takahashi H, Murata K, Nagatsuma T, Kukutsu N, Kado Y, Iai N, Okabe S, Kimura S, Ikegawa H, Nishikawa H, Nakayama T and Inada T 2009 IEEE Trans. Microw. Theory Tech. 57 1102 [11] Blin S, Tohme L, Coquillat D, Horiguchi S, Minamikata Y, Hisatake S, Nouvel P, Cohen T, Penarier A, Cano F, Varani L, Knap W and Nagatsuma T 2013 J. Commun. Netw. 15 559 [12] Guo D Y, Li P G, Chen Z W, Wu Z P and Tang W H 2019 Acta Phys. Sin. 68 7 (in Chinese) [13] Dimitrijev S, Han J, Moghadam H A and Aminbeidokhti A 2015 MRS Bull. 40 399 [14] Weyher J L 2006 Superlattices Microstruct. 40 279 [15] Özgür Ü, Hofstetter D and Morkoç H 2010 Proc. IEEE Inst. Electr. Electron. Eng. 98 1255 [16] Chen X, Ren F, Gu S and Ye J 2019 Photonics Res. 7 381 [17] Onuma T, Saito S, Sasaki K, Masui T, Yamaguchi T, Honda T and Higashiwaki M 2015 JPN J. Appl. Phys. 54 112601 [18] Yuan Y, Hao W, Mu W, Wang Z, Chen X, Liu Q, Xu G, Wang C, Zhou H, Zou Y, Zhao X, Jia Z, Ye J, Zhang J, Long S, Tao X, Zhang R and Hao Y 2021 Fundamental Res. 1 697 [19] Liu Z and Tang W 2023 J. Phys. D: Appl. Phys. 56 093002 [20] Du X, Li Z, Luan C, Wang W, Wang M, Feng X, Xiao H and Ma J 2015 J. Mater. Sci. 50 3252 [21] Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z and Tang W 2018 IEEE Photon. Technol. Lett. 30 993 [22] Liu Z, Du L, Zhang S H, Li L, Xi Z Y, Tang J C, Fang J P, Zhang M L, Yang L L, Li S, Li P G, Guo Y F and Tang W H 2022 IEEE Trans. Electron Devices 69 5595 [23] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Technol. 31 034001 [24] Zhou H, Zhang J, Zhang C, Feng Q, Zhao S, Ma P and Hao Y 2019 J. Semicond. 40 011803 [25] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105 [26] Tak B R, Kumar S, Kapoor A K, Wang D, Li X, Sun H and Singh R 2021 J. Phys. D: Appl. Phys. 54 453002 [27] Kamiya T and Hosono H 2010 NPG Asia Mater. 2 15 [28] Liang H, Han Z and Mei Z 2020 Phys. Status Solidi 218 2000339 [29] Wang J, Xiong Y, Ye L, Li W, Qin G, Ruan H, Zhang H, Fang L, Kong C and Li H 2021 Opt. Mater. 112 110808 [30] Wang Y, Cui W, Yu J, Zhi Y, Li H, Hu Z Y, Sang X, Guo E J, Tang W and Wu Z 2019 ACS Appl. Mater. Interfaces 11 45922 [31] Battu A K and Ramana C V 2018 Adv. Eng. Mater. 20 1701033 [32] Zhang F, Li H, Cui Y T, Li G L and Guo Q 2018 AIP Adv. 8 045112 [33] Cui S, Mei Z, Zhang Y, Liang H and Du X 2017 Adv. Opt. Mater. 5 1700454 [34] Liang H, Cui S, Su R, Guan P, He Y, Yang L, Chen L, Zhang Y, Mei Z and Du X 2018 ACS Photon. 6 351 [35] Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phys. B 28 028501 [36] Zhu W, Xiong L, Si J, Hu Z, Gao X, Long L, Li T, Wan R, Zhang L and Wang L 2020 Semicond. Sci. Technol. 35 055037 [37] Wang Y, Lo C Y, Wong Y S, Kwok C K G, Shil S K and Yu K M 2021 J. Alloys Compd. 875 160000 [38] Fang M, Zhao W, Li F, Zhu D, Han S, Xu W, Liu W, Cao P, Fang M and Lu Y 2019 Sensors 20 129 [39] Kumar N, Arora K and Kumar M 2019 J. Phys. D: Appl. Phys. 52 335103 [40] Qin Y, Li L H, Yu Z, Wu F, Dong D, Guo W, Zhang Z, Yuan J H, Xue K H, Miao X and Long S 2021 Adv. Sci. 8 e2101106 [41] Zhi Y S, Li P G, Wang P C, Guo D Y, An Y H, Wu Z P, Chu X L, Shen J Q, Tang W H and Li C R 2016 AIP Adv. 6 015215 [42] Yang C C, Huang J Q, Chen K Y, Chiu P H, Vu H T and Su Y K 2019 IEEE Access 7 175186 [43] Zhang L, Yu H, Xiong L, Zhu W and Wang L 2019 J. Mater. Sci.: Mater. Electron. 30 8629 [44] Yang Z, Wu J, Li P, Chen Y, Yan Y, Zhu B, Hwang C S, Mi W, Zhao J, Zhang K and Guo R 2020 Ceram. Int. 46 21141 [45] Zan H W, Li C H, Yeh C C, Dai M Z, Meng H F and Tsai C C 2011 Appl. Phys. Lett. 98 253503 [46] Yang D J, Whitfield G C, Cho N G, Cho P S, Kim I D, Saltsburg H M and Tuller H L 2012 Sens. Actuators B: Chem. 171 1166 [47] Sui Y, Liang H, Chen Q, Huo W, Du X and Mei Z 2020 ACS Appl. Mater. Interfaces 12 8929 [48] Peng R Y and Liu W C 2021 IEEE Trans. Electron Devices 68 753 [49] Guo D Y, Wu Z P, An Y H, Li P G, Wang P C, Chu X L, Guo X C, Zhi Y S, Lei M, Li L H and Tang W H 2015 Appl. Phys. Lett. 106 042105 [50] Wang P C, Li P G, Zhi Y S, Guo D Y, Pan A Q, Zhan J M, Liu H, Shen J Q and Tang W H 2015 Appl. Phys. Lett. 107 262110 [51] Siah S C, Brandt R E, Lim K, Schelhas L T, Jaramillo R, Heinemann M D, Chua D, Wright J, Perkins J D, Segre C U, Gordon R G, Toney M F and Buonassisi T 2015 Appl. Phys. Lett. 107 252103 [52] Heinemann M D, Berry J, Teeter G, Unold T and Ginley D 2016 Appl. Phys. Lett. 108 022107 [53] Li X, Yang J G, Ma H P, Liu Y H, Ji Z G, Huang W, Ou X, Zhang D W and Lu H L 2020 ACS Appl. Mater. Interfaces 12 30538 [54] Tao J, Lu H L, Gu Y, Ma H P, Li X, Chen J X, Liu W J, Zhang H and Feng J J 2019 Appl. Surf. Sci. 476 733 [55] Zhou C, Liu K, Chen X, Feng J, Yang J, Zhang Z, Liu L, Xia Y and Shen D 2020 J. Alloys Compd. 840 155585 [56] Eadi S B, Shin H J, Song K W, Choi H W, Kim S H and Lee H D 2021 Mater. Lett. 297 129943 [57] Kelly P J and Arnell R D 2000 Vacuum 56 159 [58] Gudmundsson J T and Lundin D 2020 High Power Impulse Magnetron Sputtering (Berlin: Elsevier) p. 1 [59] Zhu J, Xu Z, Ha S, Li D, Zhang K, Zhang H and Feng J 2022 Materials 15 [60] Liu H, Zhou S, Zhang H, Ye L, Xiong Y, Yu P, Li W, Yang X, Li H and Kong C 2022 J. Phys. D: Appl. Phys. 55 305104 [61] Krebs H U, Weisheit M, Faupel J, Süske E, Scharf T, Fuhse C, Störmer M, Sturm K, Seibt M and Kijewski H 2003 Adv. Solid State Phys. 505 [62] Zhao J L, Li X M, Bian J M, Yu W D and Gao X D 2005 J. Cryst. Growth 276 507 [63] Leskelä M and Ritala M 2002 Thin Solid Films 409 138 [64] Parsons G N, George S M and Knez M 2011 MRS Bull. 36 865 [65] Xu Y, Cheng Y, Li Z, Feng Q, Zhang Y, Chen D, Zhu W, Zhang J, Zhang C and Hao Y 2021 Nano Select 2 2112 [66] Li S, Yang C, Zhang J, Dong L, Cai C, Liang H and Liu W 2020 Nanomaterials 10 1760 [67] Huang L, Hu Z, Zhang H, Xiong Y, Fan S, Kong C, Li W, Ye L and Li H 2021 J. Mater. Chem. C 9 10354 [68] Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang X and Shan C 2019 Adv. Funct. Mater. 29 1906040 [69] Zhou H, Cong L, Ma J, Li B, Chen M, Xu H and Liu Y 2019 J. Mater. Chem. C 7 13149 [70] Han Z, Liang H, Huo W, Zhu X, Du X and Mei Z 2020 Adv. Opt. Mater. 8 1901833 [71] Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W and Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714 [72] Liu S, Jiao S, Lu H, Nie Y, Gao S, Wang D, Wang J and Zhao L 2022 J. Alloys Compd. 890 161827 [73] Yang L L, Liu Z, Xu Q, Zhang M L, Li S, Guo Y F and Tang W H 2023 IEEE Sens. J. 23 6990 [74] Hong X, Loy D J, Dananjaya P A, Tan F, Ng C and Lew W 2018 J. Mater. Sci. 53 8720 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|