Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 088201    DOI: 10.1088/1674-1056/acd2bc
RAPID COMMUNICATION Prev   Next  

Synthesis and electrochemical performance of La2CuO4 as a promising coating material for high voltage Li-rich layered oxide cathodes

Fuliang Guo(郭福亮)1,2, Jiaze Lu(卢嘉泽)1, Meihua Su(苏美华)3, Yue Chen(陈约)1, Jieyun Zheng(郑杰允)1, Liang Yin(尹良)1,4,†, and Hong Li(李泓)1,2,3,4,‡
1. Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, China;
4. Yangtze River Delta Physics Research Center, Liyang 213300, China
Abstract  The structural transformations, oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides (LROs) cathodes in Li-ion batteries. Thus, stabilizing the surfaces of LROs is the key to realize their practical application in high energy density Li-ion batteries. Surface coating is regarded as one of the most effective strategies for high voltage cathodes. The ideal coating materials should prevent cathodes from electrolyte corrosion and possess both electronic and Li-ionic conductivities simultaneously. However, commonly reported coating materials are unable to balance these functions well. Herein, a new type of coating material, La2CuO4 was introduced to mitigate the surface issues of LROs for the first time, due to its superb electronic conductivity (26-35 mS·cm-1) and lithium-ionic diffusion coefficient (10-12-10-13 cm2·s-1). After coating with the La2CuO4, the capacity retention of Li1.2Ni0.54Co0.13Mn0.13O2 cathode was increased to 85.9% (compared to 79.3% of uncoated cathode) after 150 cycles in the voltage range of 2.0-4.8 V. In addition, only negligible degradations on the deliverable capacity and rate capability were observed.
Keywords:  La2CuO4      electronic conductivity      Li-ionic conductivity      Li-rich layered oxides      high voltage  
Received:  11 February 2023      Revised:  24 April 2023      Accepted manuscript online:  05 May 2023
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2019YFE0100200), the National Natural Science Foundation of China (Grant No.U1964205), and the Beijing Municipal Science and Technology Commission (Grant No.Z191100004719001).
Corresponding Authors:  Liang Yin, Hong Li     E-mail:  lyin@iphy.ac.cn;hli@iphy.ac.cn

Cite this article: 

Fuliang Guo(郭福亮), Jiaze Lu(卢嘉泽), Meihua Su(苏美华), Yue Chen(陈约), Jieyun Zheng(郑杰允), Liang Yin(尹良), and Hong Li(李泓) Synthesis and electrochemical performance of La2CuO4 as a promising coating material for high voltage Li-rich layered oxide cathodes 2023 Chin. Phys. B 32 088201

[1] Lu Z, MacNeil D and Dahn J 2001 Electrochem. Solid-State Lett. 4 A191
[2] Thackeray M M, Johnson C S, Vaughey J T, Li N and Hackney S A 2005 J. Mater. Chem. 15 2257
[3] Schmuch R, Wagner R, Hörpel G, Placke T and Winter M 2018 Nat. Energy 3 267
[4] Zuo Y, Li B, Jiang N, Chu W, Zhang H, Zou R and Xia D 2018 Adv. Mater. 30 1707255
[5] Lu Z and Dahn J R 2002 J. Electrochem. Soc. 149 A815
[6] Croy J, Kang S-H, Balasubramanian M and Thackeray M 2011 Electrochem. Commun. 13 1063
[7] Croy J R, Gallagher K G, Balasubramanian M, Long B R and Thackeray M M 2014 J. Electrochem. Soc. 161 A318
[8] Yu X, Lyu Y, Gu L, Wu H, Bak S M, Zhou Y, Amine K, Ehrlich S N, Li H and Nam K W 2014 Adv. Energy Mater. 4 1300950
[9] Gent W E, Lim K, Liang Y, Li Q, Barnes T, Ahn S J, Stone K H, McIntire M, Hong J and Song J H 2017 Nat. Commun. 8 1
[10] Armstrong A R, Holzapfel M, Novák P, Johnson C S, Kang S H, Thackeray M M and Bruce P G 2006 J. Am. Chem. Soc. 128 8694
[11] Yin W, Grimaud A, Rousse G, Abakumov A M, Senyshyn A, Zhang L, Trabesinger S, Iadecola A, Foix D and Giaume D 2020 Nat. Commun. 11 1
[12] Gallagher K G, Croy J R, Balasubramanian M, Bettge M, Abraham D P, Burrell A K and Thackeray M M 2013 Electrochem. Commun. 33 96
[13] Xiao Z, Liu J, Fan G, Yu M, Liu J, Gou X, Yuan M and Cheng F 2020 Mater. Chem. Front. 4 1689
[14] Ji X, Xia Q, Xu Y, Feng H, Wang P and Tan Q 2021 J. Power Sources 487 229362
[15] Lan X, Xin Y, Wang L and Hu X 2018 J. Nanopart. Res. 20 1
[16] Grenier J, Wattiaux A, Lagueyte N, Park J, Marquestaut E, Etourneau J and Pouchard M 1991 Physica C 173 139
[17] Grenier J C, Pouchard M and Wattiaux A 1996 Curr. Opin. Solid. ST. M. 1 233
[18] Grant P, Parkin S, Lee V, Engler E, Ramirez M, Vazquez J, Lim G, Jacowitz R and Greene R 1987 Phys. Rev. Lett. 58 2482
[19] Labbe J and Bok J 1987 Europhys. Lett. 3 1225
[20] Cardoso D, Šljukić B, Sousa N, Sequeira C, Figueiredo F and Santos D 2018 Phys. Chem. Chem. Phys. 20 19045
[21] Grenier J, Wattiaux A, Doumerc J, Dordor P, Fournes L, Chaminade J and Pouchard M 1992 J. Solid State Chem. 96 20
[22] Sanchez R, Torresi R, Rettori C, Oseroff S and Fisk Z 1995 Electrochim. Acta 40 209
[23] Bhavaraju S, DiCarlo J, Yazdi I, Jacobson A, Feng H, Li Z and Hor P 1994 Mater. Res. Bull. 29 735
[24] Pouchard M, Demourgues A, Weill F, Villesuzanne A, Wattiaux A and Grenier J 1994 Adv. Mater. Res. 1 11
[25] Delville M H, Barbut D, Wattiaux A, Grenier J C and Etourneau J 2004 J. Electrochem.Soc.151 J69
[26] McKinnon W, Post M, Selwyn L, Pleizier G, Tarascon J, Barboux P, Greene L and Hull G 1988 Phys. Rev. B 38 6543
[27] Kong G, Jones M O, Abell J S, Edwards P P, Lees S T, Gibbons K E, Gameson I and Aindow M 2001 J. Mater. Res. 11 3309
[28] Zhang Z, Chen X, Zhang X, Lin H, Lin H, Zhou Y and Wang X 2013 Catal. Commun. 36 20
[29] Wang X T, Li B, Kong D R, Zhang Z Y, Zhang X F, Deng Z P, Huo L H and Gao S 2022 J. Alloys Compd. 911 165037
[30] Bruce P, Lisowska-Oleksiak A, Saidi M and Vincent C 1992 Solid State Ionics 57 353
[31] Ning F, Li S, Xu B and Ouyang C 2014 Solid State Ionics 263 46
[32] Li X, Su Z and Wang Y 2018 J. Alloys Compd. 735 2182
[33] Wang C, Appleby A J and Little F E 2001 J. Electroanal. Chem. 497 33
[34] Gordon I J, Grugeon S, Takenouti H, Tribollet B, Armand M, Davoisne C, Débart A and Laruelle S 2017 Electrochim. Acta 223 63
[35] Sun X, Zhang X, Liu W, Wang K, Li C, Li Z and Ma Y 2017 Electrochim. Acta 235 158
[36] Zhuang Q, Chen Z, Dong Q, Jiang Y, Huang L and Sun S 2006 Chin. Sci. Bull. 51 1055
[37] Shigang L, Jiaoyang W, Shu Z, Jian G, Shaofei W and Hong Li 2015 Energy Storage Sci. Technolo. 4 83
[1] Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension
Zheng-Xin Wen(温正欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Jun Chen(陈俊), Ya-Wei He(何亚伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2019, 28(6): 068504.
[2] Conductivity and applications of Li-biphenyl-1, 2-dimethoxyethane solution for lithium ion batteries
Geng Chu(褚赓), Bo-Nan Liu(刘柏男), Fei Luo(罗飞), Wen-Jun Li(李文俊), Hao Lu(陆浩), Li-Quan Chen(陈立泉), Hong Li(李泓). Chin. Phys. B, 2017, 26(7): 078201.
[3] Novel high-K with low specific on-resistance high voltage lateral double-diffused MOSFET
Li-Juan Wu(吴丽娟), Zhong-Jie Zhang(章中杰), Yue Song(宋月), Hang Yang(杨航), Li-Min Hu(胡利民), Na Yuan(袁娜). Chin. Phys. B, 2017, 26(2): 027101.
[4] Continuous operation of 2.45-GHz microwave proton source for 306 hours with more than 50 mA DC beam
Peng Shi-Xiang (彭士香), Zhang Ai-Lin (张艾霖), Ren Hai-Tao (任海涛), Zhang Tao (张滔), Xu Yuan (徐源), Zhang Jing-Feng (张景丰), Gong Jian-Hua (龚建华), Guo Zhi-Yu (郭之虞), Chen Jia-Er (陈佳洱). Chin. Phys. B, 2015, 24(7): 075203.
[5] Comparative investigation of resistance and ability to trigger high voltage discharge for single and multiple femtosecond filaments in air
Guo Kai-Min (郭凯敏), Hao Zuo-Qiang (郝作强), Lin Jing-Quan (林景全), Sun Chang-Kai (孙长凯), Gao Xun (高勋), Zhao Zhen-Ming (赵振明). Chin. Phys. B, 2013, 22(3): 035203.
[6] Electric field modulation technique for high-voltage AlGaN/GaN Schottky barrier diodes
Tang Cen (汤岑), Xie Gang (谢刚), Zhang Li (张丽), Guo Qing (郭清), Wang Tao (汪涛), Sheng Kuang (盛况). Chin. Phys. B, 2013, 22(10): 106107.
[7] A new analytical model of high voltage silicon on insulator (SOI) thin film devices
Hu Sheng-Dong(胡盛东), Zhang Bo(张波), and Li Zhao-Ji(李肇基). Chin. Phys. B, 2009, 18(1): 315-319.
[8] ELECTROCHEMICAL OXIDATION OF La2CuO4 SINGLE CRYSTALS
Chen Ling (陈玲), Huang Yu-zhen (黄玉珍), Zhou Fang (周放), Dong Cheng (董成), Che Guang-can (车广灿), Zhao Zhong-xian (赵忠贤). Chin. Phys. B, 2000, 9(8): 624-629.
No Suggested Reading articles found!