Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090303    DOI: 10.1088/1674-1056/acac15
GENERAL Prev   Next  

Generalized uncertainty principle from long-range kernel effects: The case of the Hawking black hole temperature

Rami Ahmad El-Nabulsi1,2,4,† and Waranont Anukool1,2,3
1 Center of Excellence in Quantum Technology, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
2 Quantum-Atom Optics Laboratory and Research Center for Quantum Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
3 Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
4 Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
Abstract  We prove the existence of an analogy between spatial long-range interactions, which are of the convolution-type introduced in non-relativistic quantum mechanics, and the generalized uncertainty principle predicted from quantum gravity theories. As an illustration, black hole temperature effects are discussed. It is observed that for specific choices of the moment's kernels, cold black holes may emerge in the theory.
Keywords:  long-range kernel effects      generalized uncertainty principle  
Received:  16 October 2022      Revised:  27 November 2022      Accepted manuscript online:  16 December 2022
PACS:  03.65.-w (Quantum mechanics)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
Corresponding Authors:  Rami Ahmad El-Nabulsi     E-mail:  el-nabulsi@atiner.gr,nabulsiahmadrami@yahoo.fr

Cite this article: 

Rami Ahmad El-Nabulsi and Waranont Anukool Generalized uncertainty principle from long-range kernel effects: The case of the Hawking black hole temperature 2023 Chin. Phys. B 32 090303

[1] Popescu S 2014 Nat. Phys. 10 264
[2] Vaidman L 2014 Quantum Stud. Math. Found. 1 5
[3] Vaidman L 2019 Entropy 21 447
[4] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[5] Tripler F J 2014 Proc. Nat. Acad. Sci. USA 111 11281
[6] Kamalov T F 2009 J. Russ. Laser Res. 30 466
[7] Christov I P 2012 J. Chem. Phys. 136 034116
[8] Piceno Martínez A, Benítez Rodríguez E, Mendoza Fierro J, Méndez Otero M and Arévalo Aguilar L 2018 Entropy 20 299
[9] Simon K Z 1990 Phys. Rev. D 41 3720
[10] Kamalov T F 2013 J. Phys. Conf. Ser. 442 012051
[11] Doebner H D and Goldin G A 1992 Phys. Lett. A 162 397
[12] Doebner H D and Goldin G A 1994 J. Phys. A: Math. Gen. 27 1771
[13] Nattermann P and Zhdanov R 1996 J. Phys. A: Math. Gen. 29 2869
[14] Puszkarz W 1997 quant-phys/9710007
[15] El-Nabulsi R A 2019 Phys. C 567 1353545
[16] El-Nabulsi R A 2018 J. Phys. Chem. Sol. 122 167
[17] El-Nabulsi R A 2018 J. Magn. Magnet. Mat. 458 213
[18] Ben-Artzi M, Koch H and Saut J C 2000 C. R. Acad. Sci. Paris 330 87
[19] Karpman V I 1996 Phys. Rev. E 53 R1336
[20] Murray J D and Oster G F 1984 IMA J. Math. Appl. in Medic. & Biol. 1 51
[21] Murray J D and Oster G F 1984 J. Math. Biol. 19 265
[22] Murray J D 2003 Mathematical Biology. II. Spatial Models and Biomedical Applications, 3rm rd Edition. Vol. 18
[23] Laing C R and Troy W 2003 SIAM J. Appl. Dyn. Syst. 2 487
[24] El-Nabulsi R A 2020 J. Comp. Theor. Transp. 49 267
[25] El-Nabulsi R A and Anukool W 2022 Phys. B 644 414229
[26] El-Nabulsi R A and Anukool W 2022 Proc. R. Soc. A 478 20220200
[27] El-Nabulsi R A 2022 J. R. Soc. Interface 19 20220079
[28] Kempf A, Mangano G and Mann R B 1995 Phys. Rev. D 52 1108
[29] Nozari K and Pedram P 2010 Europhys. Lett. 92 50013
[30] Perivolaropoulos L 2017 Phys. Rev. D 95 103523
[31] Maggiore M 1994 Phys. Rev. D 49 5182
[32] Hossenfelder S 2013 Living Rev. Rel. 16 2
[33] El-Nabulsi R A 2019 Quant. Stud. Math. Found. 6 235
[34] El-Nabulsi R A 2020 Proc. R. Soc. A 476 20190729
[35] El-Nabulsi R A 2020 Eur. Phys. J. P 135 34
[36] El-Nabulsi R A 2020 Int. J. Theor. Phys. 59 2083
[37] Kempf A 1997 J. Phys. A 30 2093
[38] Bushev P A, Bourhill J, Goryachev M, Kukharchyk N, Ivanov E, Galliou S, Tobar M E and Danilishin S 2019 Phys. Rev. D 100 066020
[39] Bosso P, Das S and Mann R B 2018 Phys. Lett. B 785 498
[40] Mann R B, Husin I, Patel H, Faizal M, Sulaksono A and Suroro A 2021 Sci. Rep. 11 7474
[41] El-Nabulsi R A and Anukool W 2022 Therm. Sci. Eng. Prog. 34 101424
[42] El-Nabulsi R A and Anukool W 2022 Acta Mech. 233 4083
[43] Chasseigne E, Chaves M and Rossi J D 2006 J. Math. Pure. Appl. 86 271
[44] Zhang L, Li W T and Chang Z C 2017 Sci. China Math. 60 1791
[45] Koffa D J, Omonile J F and Howusu S X K 2013 Arch. Phys. Res. 4 41
[46] Ong Y C 2018 J. Cosm. Astropart. Phys. 09 015
[47] Bronnikov K A, Chernakova M S, Fabris J C, Pinto-Neto N and Rodrigues M E 2006 Int. J. Mod. Phys. D 17 25
[48] Aharonov Y, Casher A and Nussinov S 1987 Phys. Lett. B 191 51
[49] Chen P, Ong Y C and Yeom D H 2015 Phys. Rept. 603 1
[50] Cadoni M, Tuveri M and Sanna A P 2020 Symmetry 12 1396
[51] Cadoni M and Tuveri M 2019 Phys. Rev. D 100 024029
[52] Carr B J 2013 Mod. Phys. Lett. A 28 1340011
[53] Zeynali K, Darabi F and Motavalli H 2012 J. Cosm. Astropart. Phys. 12 033
[54] Lake M J 2021 arXiv: 2112.13938
[55] Lake M J 2019 Galaxies 7 11
[56] Lake M J, Miller M and Liang S D 2020 Universe 6 56
[57] Lake M J, Miller M, Ganardi R F, Liu Z, Liang S D and Paterek T 2019 Class. Quant. Grav. 36 155012
[58] Vidal F, Carballeira C, Currás S R, Mosqueira J, Ramallo M V, Veira J A and Viña J 2002 Eur. Phys. Lett. 59 754
[59] El-Nabulsi R A 2020 Phys. C 557 1353716
[60] El-Nabulsi R A and Anukool W 2022 Phys. E 146 115552
[61] El-Nabulsi R A 2021 Int. J. Adv. Nucl. Reactor Des. Tech. 3 102
[62] El-Nabulsi R A 2021 Can. J. Phys. 99 703
[63] El-Nabulsi R A 2018 Eur. Phys. J. P 133 4
[64] El-Nabulsi R A 2019 Quant. Stud. Math. Found. 6 123
[1] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[2] Generalized uncertainty principle and tunneling radiation of the SAdS5 black hole
Zhao Ren(赵仁), Zhang Li-Chun(张丽春), Wu Yue-Qin(武月琴), and Li Huai-Fan(李怀繁) . Chin. Phys. B, 2010, 19(1): 010402.
[3] Entropy of a rotating and charged black string to all orders in the Planck length
Zhao Ren(赵仁), Wu Yue-Qin (武月琴), and Zhang Li-Chun(张丽春). Chin. Phys. B, 2009, 18(5): 1749-1754.
No Suggested Reading articles found!