Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090301    DOI: 10.1088/1674-1056/accf80
GENERAL Prev   Next  

Quantum correlation enhanced bound of the information exclusion principle

Jun Zhang(张钧)1,2,†, Kan He(贺衎)2, Hao Zhang(张昊)3, and Chang-Shui Yu(于长水)4,‡
1 College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China;
2 College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China;
3 College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China;
4 School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  We investigate the information exclusion principle for multiple measurements with assistance of multiple quantum memories that are well bounded by the upper and lower bounds. The lower bound depends on the observables' complementarity and the complementarity of uncertainty whilst the upper bound includes the complementarity of the observables, quantum discord, and quantum condition entropy. In quantum measurement processing, there exists a relationship between the complementarity of uncertainty and the complementarity of information. In addition, based on the information exclusion principle the complementarity of uncertainty and the shareability of quantum discord can exist as an essential factor to enhance the bounds of each other in the presence of quantum memory.
Keywords:  quantum correlation      information exclusion principle      entropic uncertainty relation  
Received:  14 March 2023      Revised:  23 April 2023      Accepted manuscript online:  24 April 2023
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12271394, 11775040, and 12011530014), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201801D221032 and 201801D121016), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2019L0178), the Key Research and Development Program of Shanxi Province (Grant No. 202102010101004), and the China Scholarship Council.
Corresponding Authors:  Jun Zhang, Chang-Shui Yu     E-mail:  zhang6347@163.com;ycs@dlut.edu.cn

Cite this article: 

Jun Zhang(张钧), Kan He(贺衎), Hao Zhang(张昊), and Chang-Shui Yu(于长水) Quantum correlation enhanced bound of the information exclusion principle 2023 Chin. Phys. B 32 090301

[1] Cover T M and Thomas J A 2005 Elements of Information Theory, 2nd edn. (New York: Wiley) pp. 13-22
[2] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
[3] Koashi M 2009 New J. Phys. 11 045018
[4] Devetak I and Winter A 2005 Proc. R. Soc. Lond. A 461 207
[5] Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nat. Commun. 3 634
[6] Dupuis F, Fawzi O and Wehner S 2015 IEEE Trans. Inf. Theory 61 1093
[7] Koenig R, Wehner S and Wullschleger J 2012 IEEE Trans. Inf. Theory 58 1962
[8] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757
[9] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752
[10] Bagchi S, Datta C and Agrawal P 2022 Phys. Rev. A 106 022203
[11] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757
[12] Huang Y C 2010 Phys. Rev. A 82 012335
[13] Berta M, Coles P J and Wehner S 2014 Phys. Rev. A 90 062127
[14] Wehner S and Winter A 2010 New J. Phys. 12 025009
[15] Coles P J, Berta M, Tomamichel M and Wehner S 2017 Rev. Mod. Phys. 89 015002
[16] Sun J, Sun Y N, Li C F and Guo G C 2015 Chin. Phys. Lett. 32 90302
[17] Li Z Y 2016 Chin. Phys. Lett. 33 080302
[18] Ben-Israel A, Knips L, Dziewior J, et al. 2017 Chin. Phys. Lett. 34 20301
[19] Fan H 2018 Acta Phys. Sin. 67 120301 (in Chinese)
[20] Ke Z J, Meng Y, Wang Y T, et al. 2020 Chin. Phys. B 29 050307
[21] Deutsch D 1983 Phys. Rev. Lett. 50 631
[22] Bialynicki-Birula I and Mycielski J 1975 Commun. Math. Phys. 44 129
[23] Kraus K 1987 Phys. Rev. D 35 3070
[24] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
[25] Fu S S, Luo S L and Sun Y 2019 Acta Phys. Sin. 68 030301 (in Chinese)
[26] Liu F, Gao D M and Cai X Q 2019 Acta Phys. Sin. 68 230301 (in Chinese)
[27] Yang H, Qin L G, Tian L J and Ma H Y 2020 Chin. Phys. B 29 040303
[28] Ballester M A and Wehner S 2007 Phys. Rev. A 75 022319
[29] Wu S J, Yu S X and Molmer K 2009 Phys. Rev. A 79 022104
[30] Renes J M and Boileau J C 2009 Phys. Rev. Lett. 103 020402
[31] Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506
[32] Coles P J, Yu L, Gheorghiu V and Griffiths R B 2011 Phys. Rev. A 83 062338
[33] Pati A K, Wilde M M, Usha Devi A R, Rajagopal A K and Sudha 2012 Phys. Rev. A 86 042105
[34] Hu M L and Fan H 2013 Phys. Rev. A 87 022314
[35] Rudnicki Ƚ, Puchal a Z and Życzkowski K 2014 Phys. Rev. A 89 052115
[36] Liu S, Mu L Z and Fan H 2015 Phys. Rev. A 91 042133
[37] Adabi F, Salimi S and Haseli S 2016 Phys. Rev. A 93 062123
[38] Xiao Y L, Jing N H, Fei S M, Li T, Li-Jost X Q, Ma T and Wang Z X 2016 Phys. Rev. A 93 042125
[39] Ming F, Wang D, Fan X G, Shi W N, Ye L and Chen J L 2020 Phys. Rev. A 102 012206
[40] Hall M J W 1995 Phys. Rev. Lett. 74 3307
[41] Lin B S and Heng T H 2016 Chin. Phys. Lett. 33 110303
[42] Zhao W L and Jie Q L 2020 Chin. Phys. B 29 080302
[43] Grudka A, Horodecki M, Horodecki P, Horodecki R, K lobus W and Pankowski L 2013 Phys. Rev. A 88 032106
[44] Coles P J and Piani M 2014 Phys. Rev. A 89 022112
[45] Zhang J, Zhang Y and Yu C S 2015 Sci. Rep. 5 11701
[46] Xiao Y L, Jing N H and Li-Jost X Q 2016 Sci. Rep. 6 30440
[47] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[48] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[49] Xi Z J, Lu X M, Wang X G and Li Y M 2012 Phys. Rev. A 85 032109
[50] Hu M L and Fan H 2013 Phys. Rev. A 88 014105
[51] Dolatkhah H, Mohammadi A and Haseli S 2022 Sci. Rep. 12 4101
[1] Controlling stationary one-way steering in a three-level atomic ensemble
Jie Peng(彭洁), Jun Xu(徐俊), Hua-Zhong Liu(刘华忠), and Zhang-Li Lai(赖章丽). Chin. Phys. B, 2023, 32(12): 120305.
[2] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[3] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[4] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[5] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[6] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[7] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[8] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[9] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[10] Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths
Shao-Ying Yin(尹少英), Qing-Xin Liu(刘庆欣), Jie Song(宋杰), Xue-Xin Xu(许学新), Ke-Ya Zhou(周可雅), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(10): 100501.
[11] Reduction of entropic uncertainty in entangled qubits system by local JJ-symmetric operation
Zhang Shi-Yang (张诗阳), Fang Mao-Fa (方卯发), Zhang Yan-Liang (张延亮), Guo You-Neng (郭有能), Zhao Yan-Jun (赵艳君), Tang Wu-Wei (唐武伟). Chin. Phys. B, 2015, 24(9): 090304.
[12] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[13] Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit
Wang Dong-Mei (王冬梅), Qian Yi (钱懿), Xu Jing-Bo (许晶波), Yu You-Hong (俞攸红). Chin. Phys. B, 2015, 24(11): 110304.
[14] Rise of quantum correlations in non-Markovian environments in continuous-variable systems
Liu Xin (刘辛), Wu Wei (吴薇). Chin. Phys. B, 2014, 23(7): 070303.
[15] Measurement-induced disturbance in Heisenberg XY spin model with Dzialoshinskii-Moriya interaction under intrinsic decoherence
Shen Cheng-Gao (沈诚诰), Zhang Guo-Feng (张国锋), Fan Kai-Ming (樊开明), Zhu Han-Jie (朱汉杰). Chin. Phys. B, 2014, 23(5): 050310.
No Suggested Reading articles found!