Special Issue:
SPECIAL TOPIC — Smart design of materials and design of smart materials
|
SPECIAL TOPIC—Smart design of materials and design of smart materials |
Prev
Next
|
|
|
Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries |
Man Liu(刘曼)1,†, Zishuang Cheng(程子爽)1,†, Xiaoming Zhang(张小明)1,‡, Yefeng Li(李叶枫)1, Lei Jin(靳蕾)1, Cong Liu(刘丛)1, Xuefang Dai(代学芳)1, Ying Liu(刘影)1,§, Xiaotian Wang(王啸天)2,¶, and Guodong Liu(刘国栋)1,£ |
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China; 2 School of Physical Science and Technology, Southwest University, Chongqing 400715, China |
|
|
Abstract Rechargeable ion batteries require anode materials with excellent performance, presenting a key challenge for researchers. This paper explores the potential of using two-dimensional dumbbell silicene as an anode material for alkali metal ion batteries through density functional theory (DFT) calculations. Our findings demonstrate that alkali metal ions have negative adsorption energies on dumbbell silicene, and the energy barriers for Li/Na/K ion diffusion are as low as 0.032 eV/0.055 eV/0.21 eV, indicating that metal ions can easily diffuse across the entire surface of dumbbell silicene. Additionally, the average open circuit voltages of dumbbell silicene as anode for Li-ion, Na-ion, and K-ion batteries are 0.42 V, 0.41 V, and 0.60 V, respectively, with corresponding storage capacities of 716 mAh/g, 622 mAh/g, and 716 mAh/g. These results suggest that dumbbell silicene is an ideal anode material for Li-ion, Na-ion, and K-ion batteries, with high capacity, low open circuit voltage, and high ion diffusion kinetics. Moreover, our calculations show that the theoretical capacities obtained using DFT-D2 are higher than those obtained using DFT-D3, providing a valuable reference for subsequent theoretical calculations.
|
Received: 07 April 2023
Revised: 15 May 2023
Accepted manuscript online: 17 May 2023
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
82.47.Cb
|
(Lead-acid, nickel-metal hydride and other batteries)
|
|
96.15.Pf
|
(Physical properties of materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274112), the Overseas Scientists Sponsorship Program of Hebei Province of China (Grant No. C20210330), and the State Key Laboratory of Reliability and Intelligence of Electrical Equipment of Hebei University of Technology (Grant No. EERI PI2020009). |
Corresponding Authors:
Xiaoming Zhang, Ying Liu, Xiaotian Wang, Guodong Liu
E-mail: zhangxiaoming87@hebut.edu.cn;ying_liu@hebut.edu.cn;xiaotianwang@swu.edu.cn;gdliu1978@126.com
|
Cite this article:
Man Liu(刘曼), Zishuang Cheng(程子爽), Xiaoming Zhang(张小明), Yefeng Li(李叶枫), Lei Jin(靳蕾),Cong Liu(刘丛), Xuefang Dai(代学芳), Ying Liu(刘影), Xiaotian Wang(王啸天), and Guodong Liu(刘国栋) Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries 2023 Chin. Phys. B 32 096303
|
[1] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587 [2] Lu L G, Han X B, Li J Q, Hua J F and Quyang M 2013 J. Power Sources 226 272 [3] Dubal D P, Ayyad O, Ruiz V and Gomez-Romero P 2015 Chem. Soc. Rev. 44 1777 [4] Jana S B, Thomas S, Lee C H, Jun B and Lee S U 2020 Carbon 157 420 [5] Arico A S, Bruce P, Scrosati B, Tarascon J M and Van S W 2005 Nat. Mater. 4 366 [6] Mukherjee S, Kavalsky L and Singh C V 2018 ACS Appl. Mater. Interfaces 10 8630 [7] Khossossi N, Luo W, Haman Z, Singh D, Essaoudi I, Ainane A and Ahuja R 2022 Nano Energy 96 107066 [8] Mortazavi M, Wang C, Deng J K, Shenoy V B and Medhekar N V 2014 J. Power Sources 268 279 [9] Kansara S, Gupta S K, Sonvane Y, Pajtler M V and Ahuja R 2019 J. Phys. Chem. C 123 19340 [10] Yuan G, Bo T, Qi X, Liu P F, Huang Z and Wang B T 2019 Appl. Surf. Sci. 480 448 [11] Yu X H, Chen X H, Wang X, Yuan Z T, Feng J and Rong J 2021 Chem. Eng. J. 406 126812 [12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [13] Yabuuchi N, Kubota K, Dahbi M and Komaba S 2014 Chem. Rev. 114 11636 [14] Tarascon J M and Armand M 2001 Nature 414 359 [15] Li W F, Yang Y M, Zhang G and Zhang Y W 2015 Nano Lett. 15 1691 [16] Xiang P, Sharma S, Wang Z M, Wu J and Schwingenschiogl U 2020 ACS Appl. Mater. Interfaces 12 30731 [17] He X J, Wang R C, Yin H M, Zhang Y F, Chen W K and Huang S P 2022 Appl. Surf. Sci. 584 152537 [18] Liu J and Liu X W 2012 Adv. Mater. 24 4097 [19] Hughes Z E and Walsh T R 2015 Nanoscale 7 6883 [20] Liang Y B, Liu Z, Wang J and Liu Y 2022 Chin. Phys. B 31 116302 [21] Shi L, Xu A and Zhao T S 2017 ACS Appl. Mater. Interfaces 9 1987 [22] Wan M Q, Zhang Z Y, Zhao S Q and Zhou N G 2022 Chin. Phys. B 31 096301 [23] Mortazavi B, Dianat A, Cuniberti G and Rabczuk T 2016 Electrochim. Acta 213 865 [24] An Y L, Tian Y, Wei C L, Zhang Y C, Xiong S L, Feng J K and Qian Y 2020 Energy Stor. Mater. 32 115 [25] Sun Q L, Dai Y, Ma Y D, Jing T, Wei W and Huang B B 2016 J. Phys. Chem. Lett. 7 937 [26] Hu J P, Xu B, Yang S A, Guan S, Ouyang C Y and Yao Y G 2015 ACS Appl. Mater. Interfaces 7 24016 [27] Zhang X M, Hu J P, Cheng Y C, Yang H Y, Yao Y G and Yang S A 2016 Nanoscale 8 15340 [28] Zhou C, Huang J C and Duan X M 2021 Chin. Phys. B 30 056801 [29] Jing Y, Zhou Z, Cabrera C R and Chen Z 2013 J. Phys. Chem. C 117 25409 [30] Zhou X Y, Chen X F, Shu C Z, Huang Y, Xiao B B, Zhang W T and Wang L L 2021 ACS Appl. Mater. Interfaces 13 41169 [31] Wan M Q, Zhao S Q, Zhang Z Y and Zhou N G 2022 J. Phys. Chem. C 126 9642 [32] Wang H W, Zhang Y N, Zhao Y F, Bai G S, Xu Y K, Jin R C, Huang Y and Lin H 2022 J. Mol. Liq. 360 119523 [33] Ozcelik V O, Kecik D, Durgun E and Ciraci S 2015 J. Phys. Chem. C 119 845 [34] Zhang T, Zeng Z Y, Cheng Y, Chen X R and Cai L C 2016 New J. Phys. 18 043001 [35] Leoni T, Hogan C, Zhang K, Mansour M D, Bernard R, Parret R, Resta A, Colonn S, Borensztein Y, Ronci F, Prevol G and Masson L 2021 J. Phys. Chem. C 125 17906 [36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [38] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533 [39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [40] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Phys. Chem. C 132 154104 [41] Grimme S 2006 J. Comput. Chem. 27 1787 [42] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [43] Gonze X and Lee C 1997 Phys. Rev. B 55 10355 [44] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635 [45] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901 [46] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978 [47] Peng B, Zhang H, Shao H Z, Xu Y F, Zhang R J, Lu H L, Zhang D W and Zhu H Y 2016 ACS Appl. Mater. Interfaces 8 20977 [48] Samad A and Schwingenschlögl U 2017 Phys. Rev. Appl. 15 034025 [49] Li F, Qu Y Y and Zhao M W 2016 J. Mater. Chem. A 4 8905 [50] Zhang X M, Yu Z M, Wang S S, Guan S, Yang H Y, Yao Y and Yang S A 2016 J. Mater. Chem. A 4 15224 [51] Zhang Z Z, Zhang Y F, Li Y, Lin J, Truhlar D G and Huang S 2018 Chem. Mater. 30 3208 [52] Deng X Y, Chen X F, Huang Y, Xiao B B and Du H Y 2019 J. Phys. Chem. C 123 4721 [53] Cheng Z S, Zhang X M, Zhang H, Liu H Y, Yu X, Dai X F, Liu G D and Chen G F 2020 Phys. Chem. Chem. Phys. 22 18480 [54] Dou K Y, Ma Y D, Zhang T and Huang B B 2019 Phys. Chem. Chem. Phys. 21 26212 [55] Zhang X M, Meng W Z, He T L, Jin L, Dai X F and Liu G D 2020 Appl. Surf. Sci. 503 144091 [56] Jing Y, Zhou Z, Cabrera C R and Chen Z F 2013 J. Phys. Chem. C 117 25409 [57] Er D Q, Li J W, Naguib M, Gogotsi Y and Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 11173 [58] Zhang X M, Jin L, Dai X F, Chen G F and Liu G D 2018 ACS Appl. Mater. Interfaces 10 38978 [59] Yang E, Ji H and Jung Y 2015 J. Phys. Chem. C 119 26374 [60] Hu J P, Xu B, Yang S A, Guan S, Ouyang C Y and Yao Y G 2015 ACS Appl. Mater. Interfaces 7 24016 [61] Mukherjee S, Banwait A, Grixti S, Koratkar N and Singh C V 2018 ACS Appl. Mater. Interfaces 10 5373 [62] Jiang H R, Shyy W, Liu M, Wu M C and Zhao T S 2017 J. Mater. Chem. A 5 672 [63] Zhu J and Schwingenschlogl U 2017 2D Mater. 4 025073 [64] Sannyal A, Ahn Y and Jang J 2019 Comput. Mater. Sci. 165 121 [65] Wang D S, Liu Y H, Meng X, Wei Y J, Zhao Y Y, Pang Q and Chen G 2017 J. Mater. Chem. A 5 21370 [66] Wang Y S, Song N H, Song X Y, Zhang Q L and Li M 2018 RSC Adv. 8 10848 [67] Eames C and Islam M S 2014 J. Am. Chem. Soc. 136 16270 [68] Vargas D D, Cardoso G L, Piquini P C, Ahuja R and Baierle R J 2022 ACS Appl. Mater. Interfaces 14 47262 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|