Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 096303    DOI: 10.1088/1674-1056/acd623
Special Issue: SPECIAL TOPIC — Smart design of materials and design of smart materials
SPECIAL TOPIC—Smart design of materials and design of smart materials Prev   Next  

Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries

Man Liu(刘曼)1,†, Zishuang Cheng(程子爽)1,†, Xiaoming Zhang(张小明)1,‡, Yefeng Li(李叶枫)1, Lei Jin(靳蕾)1, Cong Liu(刘丛)1, Xuefang Dai(代学芳)1, Ying Liu(刘影)1,§, Xiaotian Wang(王啸天)2,¶, and Guodong Liu(刘国栋)1,£
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
2 School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Abstract  Rechargeable ion batteries require anode materials with excellent performance, presenting a key challenge for researchers. This paper explores the potential of using two-dimensional dumbbell silicene as an anode material for alkali metal ion batteries through density functional theory (DFT) calculations. Our findings demonstrate that alkali metal ions have negative adsorption energies on dumbbell silicene, and the energy barriers for Li/Na/K ion diffusion are as low as 0.032 eV/0.055 eV/0.21 eV, indicating that metal ions can easily diffuse across the entire surface of dumbbell silicene. Additionally, the average open circuit voltages of dumbbell silicene as anode for Li-ion, Na-ion, and K-ion batteries are 0.42 V, 0.41 V, and 0.60 V, respectively, with corresponding storage capacities of 716 mAh/g, 622 mAh/g, and 716 mAh/g. These results suggest that dumbbell silicene is an ideal anode material for Li-ion, Na-ion, and K-ion batteries, with high capacity, low open circuit voltage, and high ion diffusion kinetics. Moreover, our calculations show that the theoretical capacities obtained using DFT-D2 are higher than those obtained using DFT-D3, providing a valuable reference for subsequent theoretical calculations.
Keywords:  dumbbell silicene      density functional theory      anode materials      ion batteries  
Received:  07 April 2023      Revised:  15 May 2023      Accepted manuscript online:  17 May 2023
PACS:  63.20.dk (First-principles theory)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  82.47.Cb (Lead-acid, nickel-metal hydride and other batteries)  
  96.15.Pf (Physical properties of materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274112), the Overseas Scientists Sponsorship Program of Hebei Province of China (Grant No. C20210330), and the State Key Laboratory of Reliability and Intelligence of Electrical Equipment of Hebei University of Technology (Grant No. EERI PI2020009).
Corresponding Authors:  Xiaoming Zhang, Ying Liu, Xiaotian Wang, Guodong Liu     E-mail:  zhangxiaoming87@hebut.edu.cn;ying_liu@hebut.edu.cn;xiaotianwang@swu.edu.cn;gdliu1978@126.com

Cite this article: 

Man Liu(刘曼), Zishuang Cheng(程子爽), Xiaoming Zhang(张小明), Yefeng Li(李叶枫), Lei Jin(靳蕾),Cong Liu(刘丛), Xuefang Dai(代学芳), Ying Liu(刘影), Xiaotian Wang(王啸天), and Guodong Liu(刘国栋) Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries 2023 Chin. Phys. B 32 096303

[1] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[2] Lu L G, Han X B, Li J Q, Hua J F and Quyang M 2013 J. Power Sources 226 272
[3] Dubal D P, Ayyad O, Ruiz V and Gomez-Romero P 2015 Chem. Soc. Rev. 44 1777
[4] Jana S B, Thomas S, Lee C H, Jun B and Lee S U 2020 Carbon 157 420
[5] Arico A S, Bruce P, Scrosati B, Tarascon J M and Van S W 2005 Nat. Mater. 4 366
[6] Mukherjee S, Kavalsky L and Singh C V 2018 ACS Appl. Mater. Interfaces 10 8630
[7] Khossossi N, Luo W, Haman Z, Singh D, Essaoudi I, Ainane A and Ahuja R 2022 Nano Energy 96 107066
[8] Mortazavi M, Wang C, Deng J K, Shenoy V B and Medhekar N V 2014 J. Power Sources 268 279
[9] Kansara S, Gupta S K, Sonvane Y, Pajtler M V and Ahuja R 2019 J. Phys. Chem. C 123 19340
[10] Yuan G, Bo T, Qi X, Liu P F, Huang Z and Wang B T 2019 Appl. Surf. Sci. 480 448
[11] Yu X H, Chen X H, Wang X, Yuan Z T, Feng J and Rong J 2021 Chem. Eng. J. 406 126812
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[13] Yabuuchi N, Kubota K, Dahbi M and Komaba S 2014 Chem. Rev. 114 11636
[14] Tarascon J M and Armand M 2001 Nature 414 359
[15] Li W F, Yang Y M, Zhang G and Zhang Y W 2015 Nano Lett. 15 1691
[16] Xiang P, Sharma S, Wang Z M, Wu J and Schwingenschiogl U 2020 ACS Appl. Mater. Interfaces 12 30731
[17] He X J, Wang R C, Yin H M, Zhang Y F, Chen W K and Huang S P 2022 Appl. Surf. Sci. 584 152537
[18] Liu J and Liu X W 2012 Adv. Mater. 24 4097
[19] Hughes Z E and Walsh T R 2015 Nanoscale 7 6883
[20] Liang Y B, Liu Z, Wang J and Liu Y 2022 Chin. Phys. B 31 116302
[21] Shi L, Xu A and Zhao T S 2017 ACS Appl. Mater. Interfaces 9 1987
[22] Wan M Q, Zhang Z Y, Zhao S Q and Zhou N G 2022 Chin. Phys. B 31 096301
[23] Mortazavi B, Dianat A, Cuniberti G and Rabczuk T 2016 Electrochim. Acta 213 865
[24] An Y L, Tian Y, Wei C L, Zhang Y C, Xiong S L, Feng J K and Qian Y 2020 Energy Stor. Mater. 32 115
[25] Sun Q L, Dai Y, Ma Y D, Jing T, Wei W and Huang B B 2016 J. Phys. Chem. Lett. 7 937
[26] Hu J P, Xu B, Yang S A, Guan S, Ouyang C Y and Yao Y G 2015 ACS Appl. Mater. Interfaces 7 24016
[27] Zhang X M, Hu J P, Cheng Y C, Yang H Y, Yao Y G and Yang S A 2016 Nanoscale 8 15340
[28] Zhou C, Huang J C and Duan X M 2021 Chin. Phys. B 30 056801
[29] Jing Y, Zhou Z, Cabrera C R and Chen Z 2013 J. Phys. Chem. C 117 25409
[30] Zhou X Y, Chen X F, Shu C Z, Huang Y, Xiao B B, Zhang W T and Wang L L 2021 ACS Appl. Mater. Interfaces 13 41169
[31] Wan M Q, Zhao S Q, Zhang Z Y and Zhou N G 2022 J. Phys. Chem. C 126 9642
[32] Wang H W, Zhang Y N, Zhao Y F, Bai G S, Xu Y K, Jin R C, Huang Y and Lin H 2022 J. Mol. Liq. 360 119523
[33] Ozcelik V O, Kecik D, Durgun E and Ciraci S 2015 J. Phys. Chem. C 119 845
[34] Zhang T, Zeng Z Y, Cheng Y, Chen X R and Cai L C 2016 New J. Phys. 18 043001
[35] Leoni T, Hogan C, Zhang K, Mansour M D, Bernard R, Parret R, Resta A, Colonn S, Borensztein Y, Ronci F, Prevol G and Masson L 2021 J. Phys. Chem. C 125 17906
[36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Phys. Chem. C 132 154104
[41] Grimme S 2006 J. Comput. Chem. 27 1787
[42] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[43] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[44] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
[45] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[46] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[47] Peng B, Zhang H, Shao H Z, Xu Y F, Zhang R J, Lu H L, Zhang D W and Zhu H Y 2016 ACS Appl. Mater. Interfaces 8 20977
[48] Samad A and Schwingenschlögl U 2017 Phys. Rev. Appl. 15 034025
[49] Li F, Qu Y Y and Zhao M W 2016 J. Mater. Chem. A 4 8905
[50] Zhang X M, Yu Z M, Wang S S, Guan S, Yang H Y, Yao Y and Yang S A 2016 J. Mater. Chem. A 4 15224
[51] Zhang Z Z, Zhang Y F, Li Y, Lin J, Truhlar D G and Huang S 2018 Chem. Mater. 30 3208
[52] Deng X Y, Chen X F, Huang Y, Xiao B B and Du H Y 2019 J. Phys. Chem. C 123 4721
[53] Cheng Z S, Zhang X M, Zhang H, Liu H Y, Yu X, Dai X F, Liu G D and Chen G F 2020 Phys. Chem. Chem. Phys. 22 18480
[54] Dou K Y, Ma Y D, Zhang T and Huang B B 2019 Phys. Chem. Chem. Phys. 21 26212
[55] Zhang X M, Meng W Z, He T L, Jin L, Dai X F and Liu G D 2020 Appl. Surf. Sci. 503 144091
[56] Jing Y, Zhou Z, Cabrera C R and Chen Z F 2013 J. Phys. Chem. C 117 25409
[57] Er D Q, Li J W, Naguib M, Gogotsi Y and Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 11173
[58] Zhang X M, Jin L, Dai X F, Chen G F and Liu G D 2018 ACS Appl. Mater. Interfaces 10 38978
[59] Yang E, Ji H and Jung Y 2015 J. Phys. Chem. C 119 26374
[60] Hu J P, Xu B, Yang S A, Guan S, Ouyang C Y and Yao Y G 2015 ACS Appl. Mater. Interfaces 7 24016
[61] Mukherjee S, Banwait A, Grixti S, Koratkar N and Singh C V 2018 ACS Appl. Mater. Interfaces 10 5373
[62] Jiang H R, Shyy W, Liu M, Wu M C and Zhao T S 2017 J. Mater. Chem. A 5 672
[63] Zhu J and Schwingenschlogl U 2017 2D Mater. 4 025073
[64] Sannyal A, Ahn Y and Jang J 2019 Comput. Mater. Sci. 165 121
[65] Wang D S, Liu Y H, Meng X, Wei Y J, Zhao Y Y, Pang Q and Chen G 2017 J. Mater. Chem. A 5 21370
[66] Wang Y S, Song N H, Song X Y, Zhang Q L and Li M 2018 RSC Adv. 8 10848
[67] Eames C and Islam M S 2014 J. Am. Chem. Soc. 136 16270
[68] Vargas D D, Cardoso G L, Piquini P C, Ahuja R and Baierle R J 2022 ACS Appl. Mater. Interfaces 14 47262
[1] Hydrogen evolution reaction between small-sized Zrn (n = 2–5) clusters and water based on density functional theory
Lei-Lei Tang(唐雷雷), Shun-Ping Shi(史顺平), Yong Song(宋永), Jia-Bao Hu(胡家宝), Kai Diao(刁凯), Jing Jiang(蒋静), Zhan-Jiang Duan(段湛江), and De-Liang Chen(陈德良). Chin. Phys. B, 2023, 32(6): 066106.
[2] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[7] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[8] Activated dissociation of H2 on the Cu(001) surface: The role of quantum tunneling
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(10): 108103.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[11] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[12] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[13] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[14] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[15] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
No Suggested Reading articles found!