|
|
Electronic states of domain walls in commensurate charge density wave ground state and mosaic phase in 1T-TaS2 |
Yan Li(李彦)1,2, Yao Xiao(肖遥)1,2, Qi Zheng(郑琦)1,2, Xiao Lin(林晓)2,†, Li Huang(黄立)1,2,‡, and Hong-Jun Gao(高鸿钧)1,2 |
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100490, China |
|
|
Abstract Domain walls (DWs) in the charge-density-wave (CDW) Mott insulator 1T-TaS2 have unique localized states, which play an important role in exploring the electronic properties of the material. However, the electronic states in DWs in 1T-TaS2 have not been clearly understood, mostly due to the complex structures, phases, and interlayer stacking orders in the DW areas. Here, we explored the electronic states of DWs in the large-area CDW phase and mosaic phase of 1T-TaS2 by scanning tunneling spectroscopy. Due to the different densities of DWs, the electronic states of DWs show distinct features in these phases. In the large area CDW phase, both the domain and the DWs (DW1, DW2, DW4) have zero conductance at the Fermi level; while in the mosaic phase, they can be metallic or insulating depending on their environments. In areas with a high density of DWs, some electronic states were observed both on the DWs and within the domains, indicating delocalized states over the whole region. Our work contributes to further understanding of the interplay between CDW and electron correlations in 1T-TaS2.
|
Received: 12 March 2023
Revised: 10 April 2023
Accepted manuscript online: 16 April 2023
|
PACS:
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
Fund: Project supported by the National Key Research and Development Project of China (Grant No. 2019YFA0308500), the National Natural Science Foundation of China (Grant No. 61888102), and the Chinese Academy of Sciences (Grant Nos. XDB30000000 and YSBR-003). |
Corresponding Authors:
Xiao Lin, Li Huang
E-mail: xlin@ucas.ac.cn;lhuang@iphy.ac.cn
|
Cite this article:
Yan Li(李彦), Yao Xiao(肖遥), Qi Zheng(郑琦), Xiao Lin(林晓), Li Huang(黄立), and Hong-Jun Gao(高鸿钧) Electronic states of domain walls in commensurate charge density wave ground state and mosaic phase in 1T-TaS2 2023 Chin. Phys. B 32 077101
|
[1] Cho D, Cheon S, Kim K S, Lee S H, Cho Y H, Cheong S W and Yeom H W 2016 Nat. Commun. 7 10453 [2] Ma L, Ye C, Yu Y, Lu X F, Niu X, Kim S, Feng D, Tomanek D, Son Y W, Chen X H and Zhang Y 2016 Nat. Commun. 7 10956 [3] Cho D, Gye G, Lee J, Lee S H, Wang L, Cheong S W and Yeom H W 2017 Nat. Commun. 8 392 [4] Salzmann B, Hujala E, Witteveen C, Hildebrand B, Berger H, Rohr F, Nicholson C and Monney C 2023 Phys. Rev. Mater. 7 064005 [5] Yao Q, Park J W, Oh E and Yeom H W 2021 Nano Lett. 21 9699 [6] Skolimowski J, Gerasimenko Y and Zitko R 2019 Phys. Rev. Lett. 122 036802 [7] Butler C J, Yoshida M, Hanaguri T and Iwasa Y 2020 Nat. Commun. 11 2477 [8] Karpov P and Brazovskii S 2018 Sci. Rep. 8 4043 [9] Zhang W, Gao J, Cheng L, Bu K, Wu Z, Fei Y, Zheng Y, Wang L, Li F, Luo X, Liu Z, Sun Y and Yin Y 2022 npj Quantum Mater. 7 8 [10] Zong A, Shen X, Kogar A, Ye L, Marks C, Chowdhury D, Rohwer T, Freelon B, Weathersby S, Li R, Yang J, Checkelsky J, Wang X and Gedik N 2018 Sci. Adv. 4 eaau5501 [11] Cho D, Cho Y H, Cheong S W, Kim K S and Yeom H W 2015 Phys. Rev. B 92 085132 [12] Sayers C J, Hedayat H, Ceraso A, Museur F, Cattelan M, Hart L S, Farrar L S, Dal Conte S, Cerullo G, Dallera C, Da Como E and Carpene E 2020 Phys. Rev. B 102 161105 [13] Park J W, Lee J and Yeom H W 2021 npj Quantum Mater. 6 32 [14] Park J W, Cho G Y, Lee J and Yeom H W 2019 Nat. Commun. 10 4038 [15] Fei Y, Wu Z, Zhang W and Yin Y 2022 AAPPS Bulletin 32 20 [16] Wen W, Dang C and Xie L 2019 Chin. Phys. B 28 58504 [17] Wu X L and Lieber C M 1990 Phys. Rev. Lett. 64 1150 [18] Giambattista B, Slough C G, McNairy W W and Coleman R V 1990 Phys. Rev. B 41 10082 [19] Kazuo N and Hiroyuki S 1984 J. Phys. Soc. Jpn. 53 1103 [20] Rossnagel K and Smith N V 2006 Phys. Rev. B 73 073106 [21] Thomson R E, Walter U, Ganz E, Clarke J, Zettl A, Rauch P and DiSalvo F J 1988 Phys. Rev. B 38 10734 [22] Liu L, Yang H, Huang Y, Song X, Zhang Q, Huang Z, Hou Y, Chen Y, Xu Z, Zhang T, Wu X, Sun J, Huang Y, Zheng F, Li X, Yao Y, Gao H J and Wang Y 2021 Nat. Commun. 12 1978 [23] Yang H, Zhang T, Huang Z, Chen Y, Song X, Hao X, Yang H, Wu X, Zhang Y, Liu L, Gao H J and Wang Y 2022 ACS Nano 16 1332 [24] Chen Y, Liu L, Song X, Yang H, Huang Z, Zhang T, Yang H, Gao H J and Wang Y 2022 2D Mater. 9 014007 [25] Huang Z, Song X, Chen Y, Yang H, Yuan P, Ma H, Qiao J, Zhang Y, Sun J, Zhang T, Huang Y, Liu L, Gao H J and Wang Y 2022 J. Phys. Chem. Lett. 13 1901 [26] Liu L, Song X, Dai J, Yang H, Chen Y, Huang X, Huang Z, Ji H, Zhang Y, Wu X, Sun J T, Zhang Q, Zhou J, Huang Y, Qiao J, Ji W, Gao H J and Wang Y 2023 ACS Nano 17 2702 [27] Fazekas P and Tosatti E 1980 Physica B+C 99 183 [28] Rossnagel K 2011 J. Phys. Condens. Matter 23 213001 [29] Pillo T, Hayoz J, Berger H, Fasel R, Schlapbach L and Aebi P 2000 Phys. Rev. B 62 4277 [30] Clerc F, Battaglia C, Bovet M, Despont L, Monney C, Cercellier H, Garnier M G, Aebi P, Berger H and Forró L 2006 Phys. Rev. B 74 155114 [31] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960 [32] Song X, Liu L, Chen Y, Yang H, Huang Z, Hou B, Hou Y, Han X, Yang H, Zhang Q, Zhang T, Zhou J, Huang Y, Zhang Y, Gao H J and Wang Y 2022 Nat. Commun. 13 1843 [33] Wang Y D, Yao W L, Xin Z M, Han T T, Wang Z G, Chen L, Cai C, Li Y and Zhang Y 2020 Nat. Commun. 11 4215 [34] Lee S H, Goh J S and Cho D 2019 Phys. Rev. Lett. 122 106404 [35] Wu Z, Bu K, Zhang W, Fei Y, Zheng Y, Gao J, Luo X, Liu Z, Sun Y-P and Yin Y 2022 Phys. Rev. B 105 035109 [36] Petocchi F, Nicholson C W, Salzmann B, Pasquier D, Yazyev O V, Monney C and Werner P 2022 Phys. Rev. Lett. 129 016402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|