Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 116503    DOI: 10.1088/1674-1056/26/11/116503
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermal transport in twisted few-layer graphene

Min-Hua Wang(王敏华), Yue-E Xie(谢月娥), Yuan-Ping Chen(陈元平)
Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan 411105, China
Abstract  

Twisted graphene possesses unique electronic properties and applications, which have been studied extensively. Recently, the phonon properties of twisted graphene have received a great deal of attention. To the best of our knowledge, thermal transports in twisted graphene have been investigated little to date. Here, we study perpendicular and parallel transports in twisted few-layer graphene (T-FLG). It is found that perpendicular and parallel transports are both sensitive to the rotation angle θ between layers. When θ increases from 0° to 60°, perpendicular thermal conductivity κ first decreases and then increases, and the transition angle is θ=30°. For the parallel transport, the relation between thermal conductivity κ|| and θ is complicated, because intra-layer thermal transport is more sensitive to the edge of layer than their stacking forms. However, the dependence of interlayer scattering on θ is similar to that of κ. In addition, the effect of layer number on the thermal transport is discussed. Our results may provide references for designing the devices of thermal insulation and thermal management based on graphene.

Keywords:  twisted graphene      thermal transport      rotation angle      thermal conductivity  
Received:  07 May 2017      Revised:  23 July 2017      Accepted manuscript online: 
PACS:  63.22.Rc (Phonons in graphene)  
  63.20.kg (Phonon-phonon interactions)  
  74.25.fc (Electric and thermal conductivity)  
  65.80.Ck (Thermal properties of graphene)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51376005 and 11474243).

Corresponding Authors:  Yuan-Ping Chen     E-mail:  chenyp@xtu.edu.cn

Cite this article: 

Min-Hua Wang(王敏华), Yue-E Xie(谢月娥), Yuan-Ping Chen(陈元平) Thermal transport in twisted few-layer graphene 2017 Chin. Phys. B 26 116503

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Neto A C, Guinea F, Peres N M, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Chen Y P, Xie Y E, Sun L and Zhong J 2008 Appl. Phys. Lett. 93 092104
[4] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[5] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[6] Evans W J, Hu L and Keblinski P 2010 Appl. Phys. Lett. 96 203112
[7] Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F and Lau C N 2008 Appl. Phys. Lett. 92 151911
[8] Wassmann T, Seitsonen A P, Saitta A M, Lazzeri M and Mauri F 2008 Phys. Rev. Lett. 101 096402
[9] Wang X, Zhou X, Yao K, Zhang J and Liu Z 2011 Carbon 49 133
[10] Brown L, Hovden R, Huang P, Wojcik M, Muller D A and Park J 2012 Nano Lett. 12 1609
[11] Carozo V, Almeida C M, Ferreira E H, Cancado L G, Achete C A and Jorio A 2011 Nano Lett. 11 4527
[12] Ping J and Fuhrer M S 2012 Nano Lett. 12 4635
[13] Hass J, Varchon F, Millan-Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L and Conrad E H 2008 Phys. Rev. Lett. 100 125504
[14] Luican A, Li G, Reina A, Kong J, Nair R, Novoselov K S, Geim A K and Andrei E 2011 Phys. Rev. Lett. 106 126802
[15] Havener R W, Zhuang H, Brown L, Hennig R G and Park J 2012 Nano Lett. 12 3162
[16] Bistritzer R and MacDonald A H 2011 Proceedings of the National Academy of Sciences 108 12233
[17] Li G, Luican A, Dos Santos J L, Neto A C, Reina A, Kong J and Andrei E 2010 Nat. Phys. 6 109
[18] Dos Santos J L, Peres N and Neto A C 2007 Phys. Rev. Lett. 99 256802
[19] Gupta A K, Tang Y, Crespi V H and Eklund P C 2010 Phys. Rev. B 82 241406
[20] Righi A, Costa S, Chacham H, Fantini C, Venezuela P, Magnuson C, Colombo L, Bacsa W, Ruoff R and Pimenta M 2011 Phys. Rev. B 84 241409
[21] Cocemasov A I, Nika D L and Balandin A A 2013 Phys. Rev. B 88 035428
[22] Nika D L, Cocemasov A I and Balandin A A 2014 Appl. Phys. Lett. 105 031904
[23] Plimpton S, Crozier P and Thompson A 2007 Sandia National Laboratories 18
[24] FrantzDale B, Plimpton S J and Shephard M S 2010 Engineering with Computers 26 205
[25] Powell D, Migliorato M and Cullis A 2007 Phys. Rev. B 75 115202
[26] Lindsay L and Broido D 2010 Phys. Rev. B 81 205441
[27] Heinz H, Vaia R, Farmer B and Naik R 2008 The Journal of Physical Chemistry C 112 17281
[28] Galliéro G, Boned C, Baylaucq A and Montel F 2006 Phys. Rev. E 73 061201
[29] Petculescu A G and Lueptow R M 2005 The Journal of the Acoustical Society of America 117 175
[30] Hu J, Ruan X and Chen Y P 2009 Nano Lett. 9 2730
[31] Zhong W R, Huang W H, Deng X R and Ai B Q 2011 Appl. Phys. Lett. 99 193104
[32] Bernardin C and Olla S 2005 J. Stat. Phys. 121 271
[33] Cao H Y, Guo Z X, Xiang H and Gong X G 2012 Phys. Lett. A 376 525
[34] Lindsay L, Broido D and Mingo N 2011 Phys. Rev. B 83 235428
[35] Singh D, Murthy J Y and Fisher T S 2011 J. Appl. Phys. 110 044317
[36] Nika D L and Balandin A A 2012 Journal of Physics:Condensed Matter 24 233203
[37] He R, Chung T F, Delaney C, Keiser C, Jauregui L A, Shand P M, Chancey C, Wang Y, Bao J and Chen Y P 2013 arXiv:1307.5914
[38] Wang Z, Xie R, Bui C T, Liu D, Ni X, Li B and Thong J T 2010 Nano Lett. 11 113
[39] Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M and Bergström L 2015 Nature Nanotechnology 10 277
[40] Shahil K M and Balandin A A 2012 Solid State Commun. 152 1331
[41] Papadopoulos A M 2005 Energy and Buildings 37 77
[42] Aksamija Z and Knezevic I 2011 Appl. Phys. Lett. 98 141919
[43] Odaka S, Miyazaki H, Li S L, Kanda A, Morita K, Tanaka S, Miyata Y, Kataura H, Tsukagoshi K and Aoyagi Y 2010 Appl. Phys. Lett. 96 062111
[44] Li H, Ying H, Chen X, Nika D L, Cocemasov A I, Cai W, Balandin A A and Chen S 2014 Nanoscale 6 13402
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[6] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[7] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[8] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[11] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[12] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[13] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[14] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[15] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
No Suggested Reading articles found!