CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Low lattice thermal conductivity and high figure of merit in p-type doped K3IO |
Weiqiang Wang(王巍强)1, Zhenhong Dai(戴振宏)1,†, Qi Zhong(钟琦)1, Yinchang Zhao(赵银昌)1, and Sheng Meng(孟胜)2,3,‡ |
1 Department of Physics, Yantai University, Yantai 264005, China; 2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China |
|
|
Abstract Based on first-principles calculations, Boltzmann transport equation and semiclassical analysis, we conduct a detailed study on the lattice thermal conductivity $\kappa_\rm L$, Seebeck coefficient S, electrical conductivity σ, power factor S2σ and dimensionless figure of merit, zT, for K3IO. It is found that K3IO exhibits relatively low lattice thermal conductivity of 0.93 Wm-1K-1 at 300 K, which is lower than the value 1.26 Wm-1K-1 of the classical TE material PbTe. This is due to the smaller phonon group velocity Ν g and smaller relaxation time τΛ. The low lattice thermal conductivity can lead to excellent thermoelectric properties. Thus maximum zT of 2.87 is obtained at 700 K, and the zT=0.41 at 300 K indicate that K3IO is a potential excellent room temperature TE material. Our research on K3IO shows that it has excellent thermoelectric properties, and it is a promising candidate for applications in fields in terms of thermoelectricity.
|
Received: 24 June 2020
Revised: 27 July 2020
Accepted manuscript online: 01 August 2020
|
PACS:
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
66.70.-f
|
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974302, 11774396, and 11704322) and the Shandong Natural Science Funds for Doctoral Program, China (Grant No. ZR2017BA017). |
Corresponding Authors:
†Corresponding author. E-mail: zhdai@ytu.edu.cn ‡Corresponding author. E-mail: smeng@iphy.ac.cn
|
Cite this article:
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜) Low lattice thermal conductivity and high figure of merit in p-type doped K3IO 2020 Chin. Phys. B 29 126501
|
[1] Dresselhaus M S, Chen G, Tang M Y, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial J P and Gogna P Adv. Mater. 19 1043 DOI: 10.1002/adma.v19:82007 [2] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J Science 321 554 DOI: 10.1126/science.11597252008 [3] Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F and Chen G Energy Environ. Sci. 5 5147 DOI: 10.1039/C1EE02497C2012 [4] Snyder G J and Toberer E S Nat. Mater. 7 105 DOI: 10.1038/nmat20902008 [5] Zhao Y C, Dai Z H, Zhang C, Lian C, Zeng S M, Li G, Meng S and Ni J Phys. Rev. B 95 014307 DOI: 10.1103/PhysRevB.95.0143072017 [6] Mao J, Liu Z H and Ren Z F Nature 1 1 DOI: 10.1038/nature.2012.118182016 [7] Hicks L and Dresselhaus M Phys. Rev. B 47 16631 DOI: 10.1103/PhysRevB.47.166311993 [8] Harman T C, Walsh M P, Laforge B E and Turner G W J. Electron. Mater. 34 L19 DOI: 10.1007/s11664-005-0083-82005 [9] Venkatasubramanian R, Siivola E, Colpitts T and O'quinn B Nature 413 597 DOI: 10.1038/350980122001 [10] Aronov D, Andalman A S and Fee M S Science 320 630 DOI: 10.1126/science.11551402008 [11] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G Nature 508 373 DOI: 10.1038/nature131842014 [12] Wang H, Bahk J H, Kang C, Hwang J, Kim K, Kim J, Burke P, Bowers J E, Gossard A C, Shakouri A Proc. Natl. Acad. Sci. USA 111 10949 DOI: 10.1073/pnas.14036011112014 [13] Kresse G and Furthmüller J Phys. Rev. B 54 11169 DOI: 10.1103/PhysRevB.54.111691996 [14] Li W, Carrete J, Katcho N A and Mingo N Comput. Phys. Commun. 185 1747 DOI: 10.1016/j.cpc.2014.02.0152014 [15] Togo A, Oba F and Tanaka I Phys. Rev. B 78 134106 DOI: 10.1103/PhysRevB.78.1341062008 [16] Kresse G and Joubert D Phys. Rev. B 56 1758 DOI: 1999 [17] Chen X, Parker D, Du M H and Singh D J New J. Phys. 15 043029 DOI: 10.1088/1367-2630/15/4/0430292013 [18] Perdew J P, Burke K and Ernzerhof M Phys. Rev. Lett. 77 3865 DOI: 10.1103/PhysRevLett.77.38651996 [19] He J, Amsler M, Xia Y, Naghavi S S, Hegde V I, Hao S Q, Goedecker S, Ozoli\cnš V and Wolverton C Phys. Rev. Lett. 117 046602 DOI: 10.1103/PhysRevLett.117.0466022016 [20] Tan X J, Liu W, Liu H J, Shi J, Tang X F and Uher C Phys. Rev. B 85 205212 DOI: 10.1103/PhysRevB.85.2052122012 [21] Madsen G K and Singh D J Comput. Phys. Commun. 175 67 DOI: 10.1016/j.cpc.2006.03.0072006 [22] Parker D and Singh D J Phys. Rev. B 85 125209 DOI: 10.1103/PhysRevB.85.1252092012 [23] Togo A and Tanaka I Scr. Mater. 108 1 DOI: 10.1016/j.scriptamat.2015.07.0212015 [24] Kandemir A and Sahin H Phys. Rev. B 97 155410 DOI: 10.1103/PhysRevB.97.1554102018 [25] Zhong Q, Dai Z H, Liu J Y, Zhao Y C and Meng S Physica E 115 113683 DOI: 10.1016/j.physe.2019.1136832020 [26] Zeeshan M, Singh H K, Van D B J and Kandpal H C Phys. Rev. Mater. 1 075407 DOI: 2017 [27] Tian Z T, Garg J, Esfarjani K, Shiga T, Shiomi J and Chen G Phys. Rev. B 85 184303 DOI: 10.1103/PhysRevB.85.1843032012 [28] Liu J Y, Dai Z H, Yang X X, Zhao Y C and Meng S J. Nucl. Mater. 551 11 DOI: 2018 [29] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J Nature 473 66 DOI: 10.1038/nature099962011 [30] Tian Z T, Garg J, Esfarjani K, Shiga T, Shiomi J and Chen G Phys. Rev. B 85 184303 DOI: 10.1103/PhysRevB.85.1843032012 [31] Kim S W, Kimura Y and Mishima Y Intermetallics 15 349 DOI: 10.1016/j.intermet.2006.08.0082007 [32] Xiao Y and Zhao L D npj Quantum Mater. 3 1 DOI: 10.1038/s41535-017-0074-z2018 [33] Wang C, Chen Y B, Yao S H and Zhou J Phys. Rev. B 99 024310 DOI: 10.1103/PhysRevB.99.0243102019 [34] Yang X X, Dai Z H, Zhao Y C, Liu J Y and Meng S J. Phys.: Condens. Matter 30 425401 DOI: 10.1088/1361-648X/aade172018 [35] Becke A D and Johnson E R J. Chem. Phys. 124 221101 DOI: 10.1063/1.22139702006 [36] Tran F and Blaha P Phys. Rev. Lett. 102 226401 DOI: 10.1103/PhysRevLett.102.2264012009 [37] Lan Y S, Chen X R, Hu C E, Cheng Y and Chen Q F J. Mater. Chem. A 7 11134 DOI: 10.1039/C9TA02138H2019 [38] Tao W L, Lan J Q, Hu C E, Cheng Y, Zhu J and Geng H Y J. Appl. Phys. 127 035101 DOI: 10.1063/1.51307412020 [39] Shen H, Xu J Y, Ping W J, He Q B, Zhang Y, Jin M and Jiang G J Chin. Phys. Lett. 29 076501 DOI: 10.1088/0256-307X/29/7/0765012012 [40] Liu X K and Tang B Chin. Phys. Lett. 30 066201 DOI: 10.1088/0256-307X/30/6/0662012013 [41] Huang P, You L, Liang X, Zhang J Y and Luo J 2019 Acta Phys. Sin. 68 077201 (in Chinese) DOI: 10.7498/aps.68.20181850 [42] Zhou Y, Zhao Y Q, Zeng Z Y, Chen X R and Geng H Y Phys. Chem. Chem. Phys. 21 15167 DOI: 10.1039/C9CP02020A2019 [43] Hong Y, Zhang J C and Zeng X C Chin. Phys. B 27 036501 DOI: 10.1088/1674-1056/27/3/0365012018 [44] Zhao Y C, Chen X, Zulfiqar M and Ni J Phys. Lett. A 380 475 DOI: 10.1016/j.physleta.2015.10.0492016 [45] Joseph E and Amouyal Y J. Electron. Mater. 44 1460 DOI: 10.1007/s11664-014-3416-72015 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|