Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 126501    DOI: 10.1088/1674-1056/abab83
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Low lattice thermal conductivity and high figure of merit in p-type doped K3IO

Weiqiang Wang(王巍强)1, Zhenhong Dai(戴振宏)1,†, Qi Zhong(钟琦)1, Yinchang Zhao(赵银昌)1, and Sheng Meng(孟胜)2,3,
1 Department of Physics, Yantai University, Yantai 264005, China; 2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
Abstract  Based on first-principles calculations, Boltzmann transport equation and semiclassical analysis, we conduct a detailed study on the lattice thermal conductivity $\kappa_\rm L$, Seebeck coefficient S, electrical conductivity σ, power factor S2σ and dimensionless figure of merit, zT, for K3IO. It is found that K3IO exhibits relatively low lattice thermal conductivity of 0.93 Wm-1K-1 at 300 K, which is lower than the value 1.26 Wm-1K-1 of the classical TE material PbTe. This is due to the smaller phonon group velocity Ν g and smaller relaxation time τΛ. The low lattice thermal conductivity can lead to excellent thermoelectric properties. Thus maximum zT of 2.87 is obtained at 700 K, and the zT=0.41 at 300 K indicate that K3IO is a potential excellent room temperature TE material. Our research on K3IO shows that it has excellent thermoelectric properties, and it is a promising candidate for applications in fields in terms of thermoelectricity.
Keywords:  first-principles calculation      lattice thermal transport      thermal transport characteristics      thermoelectric properties  
Received:  24 June 2020      Revised:  27 July 2020      Accepted manuscript online:  01 August 2020
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  63.20.-e (Phonons in crystal lattices)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974302, 11774396, and 11704322) and the Shandong Natural Science Funds for Doctoral Program, China (Grant No. ZR2017BA017).
Corresponding Authors:  Corresponding author. E-mail: zhdai@ytu.edu.cn Corresponding author. E-mail: smeng@iphy.ac.cn   

Cite this article: 

Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜) Low lattice thermal conductivity and high figure of merit in p-type doped K3IO 2020 Chin. Phys. B 29 126501

[1] Dresselhaus M S, Chen G, Tang M Y, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial J P and Gogna P Adv. Mater. 19 1043 DOI: 10.1002/adma.v19:82007
[2] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J Science 321 554 DOI: 10.1126/science.11597252008
[3] Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F and Chen G Energy Environ. Sci. 5 5147 DOI: 10.1039/C1EE02497C2012
[4] Snyder G J and Toberer E S Nat. Mater. 7 105 DOI: 10.1038/nmat20902008
[5] Zhao Y C, Dai Z H, Zhang C, Lian C, Zeng S M, Li G, Meng S and Ni J Phys. Rev. B 95 014307 DOI: 10.1103/PhysRevB.95.0143072017
[6] Mao J, Liu Z H and Ren Z F Nature 1 1 DOI: 10.1038/nature.2012.118182016
[7] Hicks L and Dresselhaus M Phys. Rev. B 47 16631 DOI: 10.1103/PhysRevB.47.166311993
[8] Harman T C, Walsh M P, Laforge B E and Turner G W J. Electron. Mater. 34 L19 DOI: 10.1007/s11664-005-0083-82005
[9] Venkatasubramanian R, Siivola E, Colpitts T and O'quinn B Nature 413 597 DOI: 10.1038/350980122001
[10] Aronov D, Andalman A S and Fee M S Science 320 630 DOI: 10.1126/science.11551402008
[11] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G Nature 508 373 DOI: 10.1038/nature131842014
[12] Wang H, Bahk J H, Kang C, Hwang J, Kim K, Kim J, Burke P, Bowers J E, Gossard A C, Shakouri A Proc. Natl. Acad. Sci. USA 111 10949 DOI: 10.1073/pnas.14036011112014
[13] Kresse G and Furthmüller J Phys. Rev. B 54 11169 DOI: 10.1103/PhysRevB.54.111691996
[14] Li W, Carrete J, Katcho N A and Mingo N Comput. Phys. Commun. 185 1747 DOI: 10.1016/j.cpc.2014.02.0152014
[15] Togo A, Oba F and Tanaka I Phys. Rev. B 78 134106 DOI: 10.1103/PhysRevB.78.1341062008
[16] Kresse G and Joubert D Phys. Rev. B 56 1758 DOI: 1999
[17] Chen X, Parker D, Du M H and Singh D J New J. Phys. 15 043029 DOI: 10.1088/1367-2630/15/4/0430292013
[18] Perdew J P, Burke K and Ernzerhof M Phys. Rev. Lett. 77 3865 DOI: 10.1103/PhysRevLett.77.38651996
[19] He J, Amsler M, Xia Y, Naghavi S S, Hegde V I, Hao S Q, Goedecker S, Ozoli\cnš V and Wolverton C Phys. Rev. Lett. 117 046602 DOI: 10.1103/PhysRevLett.117.0466022016
[20] Tan X J, Liu W, Liu H J, Shi J, Tang X F and Uher C Phys. Rev. B 85 205212 DOI: 10.1103/PhysRevB.85.2052122012
[21] Madsen G K and Singh D J Comput. Phys. Commun. 175 67 DOI: 10.1016/j.cpc.2006.03.0072006
[22] Parker D and Singh D J Phys. Rev. B 85 125209 DOI: 10.1103/PhysRevB.85.1252092012
[23] Togo A and Tanaka I Scr. Mater. 108 1 DOI: 10.1016/j.scriptamat.2015.07.0212015
[24] Kandemir A and Sahin H Phys. Rev. B 97 155410 DOI: 10.1103/PhysRevB.97.1554102018
[25] Zhong Q, Dai Z H, Liu J Y, Zhao Y C and Meng S Physica E 115 113683 DOI: 10.1016/j.physe.2019.1136832020
[26] Zeeshan M, Singh H K, Van D B J and Kandpal H C Phys. Rev. Mater. 1 075407 DOI: 2017
[27] Tian Z T, Garg J, Esfarjani K, Shiga T, Shiomi J and Chen G Phys. Rev. B 85 184303 DOI: 10.1103/PhysRevB.85.1843032012
[28] Liu J Y, Dai Z H, Yang X X, Zhao Y C and Meng S J. Nucl. Mater. 551 11 DOI: 2018
[29] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J Nature 473 66 DOI: 10.1038/nature099962011
[30] Tian Z T, Garg J, Esfarjani K, Shiga T, Shiomi J and Chen G Phys. Rev. B 85 184303 DOI: 10.1103/PhysRevB.85.1843032012
[31] Kim S W, Kimura Y and Mishima Y Intermetallics 15 349 DOI: 10.1016/j.intermet.2006.08.0082007
[32] Xiao Y and Zhao L D npj Quantum Mater. 3 1 DOI: 10.1038/s41535-017-0074-z2018
[33] Wang C, Chen Y B, Yao S H and Zhou J Phys. Rev. B 99 024310 DOI: 10.1103/PhysRevB.99.0243102019
[34] Yang X X, Dai Z H, Zhao Y C, Liu J Y and Meng S J. Phys.: Condens. Matter 30 425401 DOI: 10.1088/1361-648X/aade172018
[35] Becke A D and Johnson E R J. Chem. Phys. 124 221101 DOI: 10.1063/1.22139702006
[36] Tran F and Blaha P Phys. Rev. Lett. 102 226401 DOI: 10.1103/PhysRevLett.102.2264012009
[37] Lan Y S, Chen X R, Hu C E, Cheng Y and Chen Q F J. Mater. Chem. A 7 11134 DOI: 10.1039/C9TA02138H2019
[38] Tao W L, Lan J Q, Hu C E, Cheng Y, Zhu J and Geng H Y J. Appl. Phys. 127 035101 DOI: 10.1063/1.51307412020
[39] Shen H, Xu J Y, Ping W J, He Q B, Zhang Y, Jin M and Jiang G J Chin. Phys. Lett. 29 076501 DOI: 10.1088/0256-307X/29/7/0765012012
[40] Liu X K and Tang B Chin. Phys. Lett. 30 066201 DOI: 10.1088/0256-307X/30/6/0662012013
[41] Huang P, You L, Liang X, Zhang J Y and Luo J 2019 Acta Phys. Sin. 68 077201 (in Chinese) DOI: 10.7498/aps.68.20181850
[42] Zhou Y, Zhao Y Q, Zeng Z Y, Chen X R and Geng H Y Phys. Chem. Chem. Phys. 21 15167 DOI: 10.1039/C9CP02020A2019
[43] Hong Y, Zhang J C and Zeng X C Chin. Phys. B 27 036501 DOI: 10.1088/1674-1056/27/3/0365012018
[44] Zhao Y C, Chen X, Zulfiqar M and Ni J Phys. Lett. A 380 475 DOI: 10.1016/j.physleta.2015.10.0492016
[45] Joseph E and Amouyal Y J. Electron. Mater. 44 1460 DOI: 10.1007/s11664-014-3416-72015
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!