Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034401    DOI: 10.1088/1674-1056/abd2a6
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures

Zheng Chang(常征)1, Kunpeng Yuan(苑昆鹏)1, Zhehao Sun(孙哲浩)1, Xiaoliang Zhang(张晓亮)1,†, Yufei Gao(高宇飞)1,‡, Xiaojing Gong(弓晓晶)2,§, and Dawei Tang(唐大伟)1,§
1 Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; 2 Institute of Materials Science and Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
Abstract  The van der Waals (vdW) heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulators. Here, by using the first-principles calculations and the phonon Boltzmann transport equation (BTE), we studied the phonon transport properties of WS2/WSe2 bilayer heterostructures (WS2/WSe2-BHs). The lattice thermal conductivity of the ideal WS2/WSe2-BHs crystals at room temperature (RT) was 62.98 W/mK, which was clearly lower than the average lattice thermal conductivity of WS2 and WSe2 single layers. Another interesting finding is that the optical branches below 4.73 THz and acoustic branches have powerful coupling, mainly dominating the lattice thermal conductivity. Further, we also noticed that the phonon mean free path (MFP) of the WS2/WSe2-BHs (233 nm) was remarkably attenuated by the free-standing monolayer WS2 (526 nm) and WSe2 (1720 nm), leading to a small significant size effect of the WS2/WSe2-BHs. Our results systematically demonstrate the low optical and acoustic phonon modes-dominated phonon thermal transport in heterostructures and give a few important guidelines for the synthesis of van der Waals heterostructures with excellent phonon transport properties.
Keywords:  WS2/WSe2 bilayer heterostructures      thermal transport      first-principles      Boltzmann transport equation  
Received:  03 August 2020      Revised:  07 December 2020      Accepted manuscript online:  11 December 2020
PACS:  44.10.+i (Heat conduction)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51720105007, 51806031, 11602149, and GZ1257) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. DUT16RC(3)116 and DUT19RC(3)006). The computing resources from Supercomputer Center of Dalian University of Technology and ScGrid are greatly acknowledged.
Corresponding Authors:  Corresponding author. E-mail: zhangxiaoliang@dlut.edu.cn Corresponding author. E-mail: gaoyufei@dlut.edu.cn §Corresponding author. E-mail: gongxiaojing2018@cczu.edu.cn Corresponding author. E-mail: dwtang@dlut.edu.cn   

Cite this article: 

Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟) First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures 2021 Chin. Phys. B 30 034401

1 Jariwala D, Sangwan V K, Late D J, Johns J E, Dravid V P, Marks T J, Lauhon L J and Hersam M C 2013 Appl. Phys. Lett. 102 173107
2 Terrones H, L\'opez-Ur\'ías F and Terrones M 2013 Scientific Reports 3 1
3 Zhao W, Ribeiro R M, Toh M, Carvalho A, Kloc C, Castro Neto A and Eda G 2013 Nano Lett. 13 5627
4 Liu X and Zhang Y W 2018 Chin. Phys. B 27 034402
5 Mak K F, Shan J and Heinz T F 2011 Phys. Rev. Lett. 106 046401
6 Li H, Wu J, Yin Z and Zhang H 2014 Accounts of Chemical Research 47 1067
7 Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J and Li J 2014 Nano Lett. 14 3185
8 Kumar S and Schwingenschl\"ogl U 2015 Chemistry of Materials 27 1278
9 Gandi A N and Schwingenschl\"ogl U 2014 Chemistry of Materials 26 6628
10 Ma J J, Zheng J J, Zhu X L, Liu P F, Li W D and Wang B T 2019 Phys. Chem. Chem. Phys. 21 10442
11 Gao Y, Zhang X, Tang D and Hu M 2019 Carbon 143 189
12 Hicks L and Dresselhaus M S 1993 Phys. Rev. B 47 12727
13 Adessi C, Thebaud S, Bouzerar R and Bouzerar G 2017 J. Phys. Chem. C 121 12577
14 Lee C, Hong J, Lee W R, Kim D Y and Shim J H 2014 Journal of Solid State Chemistry 211 113
15 Wang K, Huang B, Tian M, Ceballos F, Lin M W, Mahjouri-Samani M, Boulesbaa A, Puretzky A A, Rouleau C M and Yoon M 2016 ACS Nano 10 6612
16 Jin C, Kim J, Utama M I B, Regan E C, Kleemann H, Cai H, Shen Y, Shinner M J, Sengupta A and Watanabe K 2018 Science 360 893
17 Li S, Zang W, Liu X, Pennycook S J, Kou Z, Yang C, Guan C and Wang J 2019 Chemical Engineering Journal 359 1419
18 Ceballos F, Bellus M Z, Chiu H Y and Zhao H 2014 ACS Nano 8 12717
19 Debbichi L, Eriksson O and Leb`egue S 2014 Phys. Rev. B 89 205311
20 Wang F Q, Liu J, Li X, Wang Q and Kawazoe Y 2017 Appl. Phys. Lett. 111 192102
21 Gao Y, Zhou Y and Hu M 2018 J. Mater. Chem. A 6 18533
22 Gao Y, Zhou Y, Zhang X and Hu M 2018 J. Mater. Chem. C 122 9220
23 Gao Y, Zhang X, Zhou Y and Hu M 2017 J. Mater. Chem. C 5 10578
24 Terrones H and Terrones M 2014 Journal of Materials Research 29 373
25 Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q and Pan A 2014 Nat. Nanotechnol. 9 1024
26 Kresse G and Furthm\"uller J 1996 Phys. Rev. B 54 11169
27 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
28 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
29 Zhang Y and Yang W 1998 Phys. Rev. Lett. 80 890
30 Mabiala-Poaty H, Douma D, M'Passi-Mabiala B and Mapasha R E 2018 Journal of Physics and Chemistry of Solids 120 211
31 Li W, Carrete J, Katcho N A and Mingo N 2014 Computer Physics Communications 185 1747
32 Li W, Mingo N, Lindsay L, Broido D A, Stewart D A and Katcho N A 2012 Phys. Rev. B 85 195436
33 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
34 Feng T and Ruan X 2016 Phys. Rev. B 93 045202
35 Guo S D and Liu J T 2017 Phys. Chem. Chem. Phys. 19 31982
36 Qin D, Yan P, Ding G, Ge X, Song H and Gao G 2018 Scientific Reports 8 1
37 Rashid Z, Nissimagoudar A S and Li W 2019 Phys. Chem. Chem. Phys. 21 5679
38 Liu P F, Bo T, Liu Z, Eriksson O, Wang F, Zhao J and Wang B T 2018 J. Mater. Chem. C 6 12689
39 Molina-Sanchez A and Wirtz L 2011 Phys. Rev. B 84 155413
40 Huang L F, Gong P L and Zeng Z 2014 Phys. Rev. B 90 045409
41 Togo A and Tanaka I 2015 Scripta Materialia 108 1
42 Gu X and Yang R 2014 Appl. Phys. Lett. 105 131903
43 Yuan K, Zhang X, Li L and Tang D 2019 Phys. Chem. Chem. Phys. 21 468
44 Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H 2016 RSC Adv. 6 5767
45 Morelli D and Heremans J 2002 Appl. Phys. Lett. 81 5126
46 Peng C, Qin G, Zhang L, Zhang G, Wang C, Yan Y, Wang Y and Hu M 2018 J. Phys. D: Appl. Phys. 51 315303
47 Gu X, Li B and Yang R 2016 J. Appl. Phys. 119 085106
48 Lee S, Esfarjani K, Mendoza J, Dresselhaus M S and Chen G 2014 Phys. Rev. B 89 085206
49 Qin G and Hu M 2018 npj Computational Materials 4 1
50 Lee S, Esfarjani K, Luo T, Zhou J, Tian Z and Chen G 2014 Nat. Commun. 5 1
51 Guo R, Jho Y D and Minnich A J 2018 Nanoscale 10 14432
52 Peimyoo N, Shang J, Yang W, Wang Y, Cong C and Yu T 2015 Nano Research 8 1210
53 Jiang P, Qian X, Gu X and Yang R 2017 Adv. Mater. 29 1701068
54 Mobaraki A, Kandemir A, Yapicioglu H, G\"ulseren O and Sevik C 2018 Computational Materials Science 144 92
55 Gu X, Wei Y, Yin X, Li B and Yang R 2018 Rev. Mod. Phys. 90 041002
56 Gu X and Yang R 2015 J. Appl. Phys. 117 025102
57 Minnich A J, Johnson J A, Schmidt A J, Esfarjani K, Dresselhaus M S, Nelson K A and Chen G 2011 Phys. Rev. Lett. 107 095901
58 Liu P F, Bo T, Xu J, Yin W, Zhang J, Wang F, Eriksson O and Wang B T 2018 Phys. Rev. B 98 235426
59 Gao Y, Jing Y, Liu J, Li X and Meng Q 2017 Applied Thermal Engineering 113 1419
60 Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306
61 Lindsay L and Broido D 2008 J. Phys.: Condens. Matter 20 165209
62 Slack G A 1979 Solid State Physics 34 1
63 Shao H, Tan X, Hu T, Liu G Q, Jiang J and Jiang H 2015 Europhys. Lett. 109 47004
64 Ding Y and Xiao B 2015 Rsc Advances 5 18391
65 Mounet N and Marzari N 2005 Phys. Rev. B 71 205214
66 Morelli D, Jovovic V and Heremans J 2008 Phys. Rev. Lett. 101 035901
67 Yang S S, Hou Y and Zhu L L 2019 Chin. Phys. B 28 086501
68 Cai Y, Pei Q X, Zhang G and Zhang Y W 2016 J. Appl. Phys. 119 065102
69 Du A, Sanvito S, Li Z, Wang D, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z and Amal R 2012 J. Am. Chem. Soc. 134 4393
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
No Suggested Reading articles found!