Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 036303    DOI: 10.1088/1674-1056/27/3/036303
Special Issue: TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials
TOPICAL REVIEW—Thermal and thermoelectric properties of nano materials Prev   Next  

Review of thermal transport and electronic properties of borophene

Dengfeng Li(李登峰), Ying Chen(陈颖), Jia He(何佳), Qiqi Tang(汤琪琪), Chengyong Zhong(钟承勇), Guangqian Ding(丁光前)
School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  In recent years, two-dimensional boron sheets (borophene) have been experimentally synthesized and theoretically proposed as a promising conductor or transistor with novel thermal and electronic properties. We first give a general survey of some notable electronic properties of borophene, including the superconductivity and topological characters. We then mainly review the basic approaches, thermal transport, as well as the mechanical properties of borophene with different configurations. This review gives a general understanding of some of the crucial thermal transport and electronic properties of borophene, and also calls for further experimental investigations and applications on certain scientific community.
Keywords:  borophene      thermal transport      electronic property  
Received:  20 October 2017      Revised:  29 December 2017      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Corresponding Authors:  Dengfeng Li     E-mail:  lidf@cqupt.edu.cn

Cite this article: 

Dengfeng Li(李登峰), Ying Chen(陈颖), Jia He(何佳), Qiqi Tang(汤琪琪), Chengyong Zhong(钟承勇), Guangqian Ding(丁光前) Review of thermal transport and electronic properties of borophene 2018 Chin. Phys. B 27 036303

[1] Castro Neto A H, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Hirsch A 2010 Nat. Mater. 9 868
[4] Singh V, Joung D, Zhai L, Das S, Khondaker S I and Seal S 2011 Prog. Mater. Sci. 56 1178
[5] Dresselhaus MS 2012 Phys. Scr. T146 014002
[6] Albert B and Hillebrecht H 2009 Angew. Chem. Int. Ed. Engl. 48 8640
[7] Sai L, Wu X, Gao N, Zhao J and King R B 2017 Nanoscale 9 13905
[8] Zhao J, Huang X, Shi R, Liu H, Su Y and King R B 2015 Nanoscale 7 15086
[9] Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J and Wang L S 2014 Nat. Commun. 5 3113
[10] Tang H and Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501
[11] Li X B, Xie S Y, Zheng H, Tian W Q and Sun H B 2015 Nanoscale 7 18863
[12] Penev E S, Kutana A and Yakobson B I 2016 Nano. Lett. 16 2522
[13] Zhao Y, Zeng S and Ni J 2016 Appl. Phys. Lett. 108 242601
[14] Penev E S, Bhowmick S, Sadrzadeh A and Yakobson B I 2012 Nano. Lett. 12 2441
[15] Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y and Wang H T 2014 Phys. Rev. Lett. 112 085502
[16] Zhang Z, Yang Y, Gao G and Yakobson B I 2015 Angew. Chem. Int. Ed. Engl. 54 13022
[17] Ma F, Jiao Y, Gao G, Gu Y, Bilic A, Chen Z and Du A 2016 Nano Lett. 16 3022
[18] Gao N, Wu X, Jiang X, Bai Y and Zhao J 2017 FlatChem
[19] Wu X, Dai J, Zhao Y, Zhuo Z, Yang J and Zeng X C 2012 ACS Nano 6 7443
[20] Liu H, Gao J and Zhao J 2013 Sci. Rep. 3 3238
[21] Liu Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Ed. Engl. 52 3156
[22] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U and Guest J R 2015 Science 350 1513
[23] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563
[24] Zhang Z, Penev E S and Yakobson B I 2016 Nat. Chem. 8 525
[25] Zhong C, Chen Y, Yu Z M, Xie Y, Wang H, Yang S A and Zhang S 2017 Nat. Commun. 8 15641
[26] Zhong C, Chen Y, Xie Y, Yang S A, Cohen M L and Zhang S B 2016 Nanoscale 8 7232
[27] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[28] An J M and Pickett W E 2001 Phys. Rev. Lett. 86 4366
[29] Zhao Y, Zeng S and Ni J 2016 Phys. Rev. B 93 014502
[30] Xiao R C, Shao D F, Lu W J, Lv H Y, Li J Y and Sun Y P 2016 Appl. Phys. Lett. 109 122604
[31] Gao M, Li Q Z, Yan X W and Wang J 2017 Phys. Rev. B 95 024505
[32] Cheng C, Sun J T, Liu H, Fu H X, Zhang J, Chen X R and Meng S 2017 2D Mater. 4 025032
[33] Wehling T O, Black-Schaffer A M and Balatsky A V 2014 Adv. Phys. 63 1
[34] Wang J, Deng S, Liu Z and Liu Z 2015 Natl. Sci. Rev. 2 22
[35] Zhou X F and Wang H T 2016 Adv. Phys:X 1 412
[36] Yi W C, Liu W, Botana J, Zhao L, Liu Z, Liu J Y and Miao M S 2017 J. Phys. Chem. Lett. 8 2647
[37] Zhang H, Xie Y, Zhang Z, Zhong C, Li Y, Chen Z and Chen Y 2017 J. Phys. Chem. Lett. 8 1707
[38] Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y and Li H 2017 Phys. Rev. Lett. 118 096401
[39] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037
[40] Ezawa M 2017 Phys. Rev. B 96 035425
[41] Li W, Mingo N, Lindsay L, Broido D A, Stewart D A and Katcho N A 2012 Phys. Rev. B 85 195436
[42] Li W, Lindsay L, Broido D A, Stewart D A and Mingo N 2012 Phys. Rev. B 86 174307
[43] Li W, Carrete J, Katcho N A and Mingo N 2014 Comp. Phys. Comm. 185 1747
[44] Müller-plathe F 1999 Phys. Rev. E 59 4894
[45] Griebel M, Knapek S and Zumbusch G 2007 Berlin:Springer
[46] Nose S 1984 J. Chem. Phys. 81 511
[47] Tan X J 2013 Theoretical Study on the Thermoelectric Properties of Carbon Nanotubes and Related One-dimensional structures (Ph. D Dissertation) (Wuhan:Wuhan Univertity)
[48] Sellan D P, Landry E S, Turney J E, McGaughey A J H and Amon C H 2010 Phys. Rev. B 81 214305
[49] Li W, Carrete J and Mingo N 2013 Appl. Phys. Lett. 103 253103
[50] Gu X and Yang R 2014 Appl. Phys. Lett. 105 131903
[51] Yamamoto T and Watanabe K 2006 Phys. Rev. Lett. 96 255503
[52] Markussen T, Jauho A P and Brandbyge M 2009 Phys. Rev. Lett. 103 055502
[53] Peng B, Zhang H, Shao H, Xu Y, Zhang R and Zhu H 2016 J. Mater. Chem. C 4 3592
[54] Sun H, Li Q and Wan X G 2016 Phys. Chem. Chem. Phys. 18 14927
[55] Ge X J, Yao K L and Lü J T 2016 Phys. Rev. B 94 165433
[56] Zhou H, Cai Y, Zhang G and Zhang Y W 2017 2D Mater. Appl. 1 14
[57] Zhou Y P and Jiang J W 2017 Sci. Rep. 7 45516
[58] Liu G, Wang H, Gao Y, Zhou J and Wang H 2017 Phys. Chem. Chem. Phys. 19 2843
[59] Tsafack T and Yakobson B I 2016 Phys. Rev. B 93 165434
[60] Xiao H, Cao W, Ouyang T, Guo S, He C and Zhong J 2017 Sci. Rep. 7 45986
[61] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[62] Mortazavi B, Le M Q, Rabczuk T and Pereira L F C 2017 Physica E 93 202
[63] Lv H Y, Lu W J, Shao D F, Lu H Y and Sun Y P 2016 J. Mater. Chem. C 4 4538
[64] Lv H Y, Lu W J, Luo X, Lu H Y, Zhu X B and Sun Y P 2016 arXiv:1608.05464
[65] Carrete J, Li W, Lindsay L, Broido D A, Gallego L J and Mingo N 2016 Mater. Res. Lett. 4 204
[66] Pang Z, Qian X, Yang R and Wei Y 2016 arXiv:1602.05370
[67] Wang H, Li Q, Gao Y, Miao F, Zhou X F and Wan X G 2016 New. J. Phys. 18 073016
[68] Yang C, Yu Z, Lu P, Liu Y, Ye H and Gao T 2014 Comput. Mater. Sci. 95 420
[69] Wei Q and Peng X 2014 Appl. Phys. Lett. 104 251915
[70] Liu F, Ming P and Li J 2007 Phys. Rev. B 76 064120
[71] Li T 2014 Phys. Rev. B. 90 167402
[72] Wang Z, Lü T Y, Wang H Q, Feng Y P and Zheng J C 2016 Phys. Chem. Chem. Phys. 18 31424
[73] Peng B, Zhang H, Shao H, Ning Z, Xu Y, Ni G, Lu H, Zhang D W and Zhu H 2017 Mater. Res. Lett. 5 399
[74] Mortazavi B, Rahaman O, Dianat A and Rabczuk T 2016 Phys. Chem. Chem. Phys. 18 27405
[75] Meng F, Chen X, Sun S and He J 2017 Physica E 91 106
[76] Liu J, Chen C, Han L, Zhu Z and Wu J 2017 arXiv:1701.08501
[77] Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H, Wu K and Chen L 2017 Phys. Rev. Mater. 1 021001
[78] Jia Y, Li C, Jiang J W, Wei N, Chen Y and Zhang Y J 2017 arXiv:1705.11016
[79] Zhang Z, Xie Y, Peng Q and Chen Y 2016 Nanotechnology 27 445703
[1] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[2] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[3] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[4] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[5] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[6] Stability and optoelectronic property of lead-free halide double perovskite Cs2B'BiI6 (B' = Li, Na and K)
Yunhui Liu(刘云辉), Wei Wang(王威), Feng Xiao(肖峰), Liangbin Xiong(熊良斌), and Xing Ming(明星). Chin. Phys. B, 2021, 30(10): 108102.
[7] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[8] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[9] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[10] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[11] Structural and electrical properties of Ga-Te systems under high pressure
Youchun Wang(王友春), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Hui Xie(谢慧), Bingbing Liu(刘冰冰), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056104.
[12] Band engineering of B2H2 nanoribbons
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046803.
[13] The magneto-thermoelectric effect of graphene with intra-valley scattering
Wenye Duan(段文晔), Junfeng Liu(刘军丰), Chao Zhang(张潮), Zhongshui Ma(马中水). Chin. Phys. B, 2018, 27(9): 097204.
[14] Electric field manipulation of multiple nonequivalent Dirac cones in the electronic structures of hexagonal CrB4 sheet
Jinkun Wang(王锦坤), Yajiao Ke(柯亚娇), Qingxing Xie(谢晴兴), Yanli Li(李艳丽), Jiafu Wang(王嘉赋). Chin. Phys. B, 2018, 27(9): 097304.
[15] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
No Suggested Reading articles found!