Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067401    DOI: 10.1088/1674-1056/27/6/067401
RAPID COMMUNICATION Prev   Next  

Nodeless superconductivity in a quasi-two-dimensional superconductor AuTe2Se4/3

Xiao-Yu Jia(贾小雨)1, Yun-Jie Yu(俞云杰)1, Xu Chen(陈旭)2, Jian-Gang Guo(郭建刚)2, Tian-Ping Ying(应天平)1, Lan-Po He(何兰坡)1, Xiao-Long Chen(陈小龙)2,3,4, Shi-Yan Li(李世燕)1,5
1 State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  

We performed ultra-low temperature thermal conductivity measurements on the single crystal of a new gold-based quasi-two-dimensional superconductor AuTe2Se4/3, which has a superconducting transition temperature Tc=2.70 K. A negligible residual linear term κ0/T in zero magnetic field is observed, which suggests fully gapped superconducting state. Furthermore, the field dependence of κ0/T is similar to that of the multi-band s-wave superconductor BaFe1.9Ni0.1As2 at low field. These results reveal multiple nodeless superconducting gaps in this interesting quasi-two-dimensional superconductor with Berezinsky-Kosterlitz-Thouless topological transition.

Keywords:  superconductivity      thermal transport measurement      gap structure      two-dimensional material  
Received:  16 April 2018      Revised:  24 April 2018      Accepted manuscript online: 
PACS:  74.25.fc (Electric and thermal conductivity)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  74.70.Dd (Ternary, quaternary, and multinary compounds)  
Fund: 

Project supported by the Key Basic Research Program of China (Grant Nos.2015CB921401 and 2016YFA0300503),the National Natural Science Foundation of China (Grant Nos.11422429 and 11421404),China Postdoctoral Science Foundation (Grant No.2016T90332),the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning,and STCSM of China (Grant No.15XD1500200),and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB04040200).

Corresponding Authors:  Shi-Yan Li     E-mail:  shiyan_li@fudan.edu.cn

Cite this article: 

Xiao-Yu Jia(贾小雨), Yun-Jie Yu(俞云杰), Xu Chen(陈旭), Jian-Gang Guo(郭建刚), Tian-Ping Ying(应天平), Lan-Po He(何兰坡), Xiao-Long Chen(陈小龙), Shi-Yan Li(李世燕) Nodeless superconductivity in a quasi-two-dimensional superconductor AuTe2Se4/3 2018 Chin. Phys. B 27 067401

[1] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[2] Xing Y, Zhang H M, Fu H L, Liu H, Sun Y, Peng J P, Wang F, Lin X, Ma X C, Xue Q K, Wang J and Xie X C 2015 Science 350 542
[3] Saito Y, Nojima T and Iwasa Y 2016 Nat. Rev. Mater. 2 16094
[4] Qin S, Kim J, Niu Q and Shih C K 2009 Science 324 1314
[5] Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L L, Ma X C, Chen X, Wang Y Y, Liu Y, Lin H Q, Jia J F and Xue Q K 2010 Nat. Phys. 6 104
[6] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rütschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
[7] Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A and Bozovic I 2008 Nature 455 782
[8] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193
[9] Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y and Iwasa Y 2015 Nat. Phys. 12 144
[10] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[11] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[12] Jiang D, Hu T, You L, Li Q, Li A, Wang H, Mu G, Chen Z, Zhang H, Yu G, Zhu J, Sun Q, Lin C, Xiao H, Xie X and Jiang M 2014 Nat. Commun. 5 5708
[13] Xi X, Zhao L, Wang Z, Berger H, Forro L, Shan J and Mak K F 2015 Nat. Nanotechnol. 10 765
[14] Staley N E, Wu J, Eklund P, Liu Y, Li L and Xu Z 2009 Phys. Rev. B 80 184505
[15] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forro L, Shan J and Mak K F 2016 Nat. Phys. 12 139
[16] Guo J G, Chen X, Jia X Y, Zhang Q H, Liu N, Lei H C, Li S Y, Gu L, Jin S F and Chen X L 2017 Nat. Commun. 8 871
[17] Duwez P, Willens R H and Klement W 1960 J. Appl. Phys. 31 1136
[18] Luo H and Klement W 1962 J. Chem. Phys. 36 1870
[19] Tsuei C C and Newkirk L R 1969 Phys. Rev. 183 619
[20] Gurevich A 2003 Phys. Rev. B 67 184515
[21] Gurevich A 2007 Physica C Supercond. 456 160
[22] Buzea C and Yamashita T 2001 Supercond. Sci. Technol. 14 R115
[23] Maple M B, Chen J W, Lambert S E, Fisk Z, Smith J L, Ott H R, Brooks J S and Naughton M J 1985 Phys. Rev. Lett. 54 477
[24] Shakeripour H, Petrovic C and Taillefer L 2009 New J. Phys. 11 055065
[25] Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M and Takagi H 2003 Phys. Rev. B 67 174520
[26] Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H and Taillefer L 2008 Phys. Rev. B 77 134501
[27] Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M and Brill J W 2003 Phys. Rev. Lett. 90 117003
[28] Proust C, Boaknin E, Hill R W, Taillefer L and Mackenzie A P 2002 Phys. Rev. Lett. 89 147003
[29] Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y and Ishiguro T 2002 Phys. Rev. Lett. 88 227004
[30] Lowell J and Sousa J B 1970 J. Low Temp. Phys. 3 65
[31] Willis J O and Ginsberg D M 1976 Phys. Rev. B 14 1916
[32] Ding L, Dong J K, Zhou S Y, Guan T Y, Qiu X, Zhang C, Li L J, Lin X, Cao G H, Xu Z A and Li S Y 2009 New J. Phys. 11 093018
[33] Terashima K, Sekiba Y, Bowen J H, Nakayama K, Kawahara T, Sato T, Richard P, Xu Y M, Li L J, Cao G H, Xu Z A, Ding H and Takahashi T 2009 Proc. Natl. Acad. Sci. 106 7330
[34] Chen X H, Dai P C, Feng D L, Xiang T and Zhang F C 2014 Nat. Sci. Rev. 1 371
[35] Norman M R 2011 Science 332 196
[36] Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M and Iwasa Y 2014 J. Phys. Soc. Jpn. 83 032001
[37] Saito Y, Kasahara Y, Ye J, Iwasa Y and Nojima T 2015 Science 125 9440
[38] Shi W, Ye J, Zhang Y, Suzuki R, Yoshida M, Miyazaki J, Inoue N, Saito Y and Iwasa Y 2015 Sci. Rep. 5 12534
[39] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. Lett. 116 077002
[40] Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Wang Y, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B and Chen X H 2017 Phys. Rev. B 95 020503
[41] Ying T P, Wang M X, Zhao Z Y, Zhang Z Z, Jia X Y, Li Y C, Lei B, Li Q, Yu Y, Cheng E J, An Z H, Zhang Y, Yang W, Chen X H and Li S Y 2018 arXiv:1802.01484[cond-mat]
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[8] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[9] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[10] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[11] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
No Suggested Reading articles found!
    PDF Preview