Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 065202    DOI: 10.1088/1674-1056/aca9c9
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Nonlinear mixing-based terahertz emission in inclined rippled density plasmas

K Gopal1, A P Singh1, and S Divya2,†
1 Rajdhani College, Department of Physics&Electronics, University of Delhi, New Delhi, India;
2 Computational Plasma Dynamics Laboratory, Rajdhani College, Department of Physics&Electronics, University of Delhi, New Delhi, India
Abstract  We propose to investigate the THz field generation using nonlinear mixing mechanism of laser beat wave with inclined rippled density plasmas. Two laser pulses with frequencies $(\omega_1, \omega_2)$ and wave vectors $(k_1, k_2)$ co-propagate and resultant laser beat wave forms at beat frequency $(\omega_1-\omega_2)$. Laser beat wave imparts a nonlinear force on the ambient electrons and pushes them outward with nonlinear velocity $v_{\rm NL}$. Coupling of induced density perturbation and nonlinear velocity $v_{\rm NL}$ generates nonlinear currents at laser beat frequency that further generates electromagnetic field $E_{(\omega_1-\omega_2)}$ in terahertz (THz) range. In the present scheme, density ripples are introduced at an angle with respect to laser propagation and flat Gaussian index ($f$) is introduced in laser field profile that transform curved top of Gaussian field envelope into flat top field envelope. The combined effect of flat laser pulses with inclined density ripples in plasmas shows 10-fold enhancement in THz field amplitude when flat-Gaussian index ($f$) varies from 1 to 4. Also, the THz field intensifies when density ripples inclination increases upto a certain angle and then decreases.
Keywords:  terahertz      inclined ripple      flat laser      laser plasma interaction  
Received:  27 September 2022      Revised:  07 November 2022      Accepted manuscript online:  08 December 2022
PACS:  52.38.-r (Laser-plasma interactions)  
  52.65.-y (Plasma simulation)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Corresponding Authors:  S Divya     E-mail:  dsingh@rajdhani.du.ac.in

Cite this article: 

K Gopal, A P Singh, and S Divya Nonlinear mixing-based terahertz emission in inclined rippled density plasmas 2023 Chin. Phys. B 32 065202

[1] Dragoman D and Dragoman M 2004 Progress in Quantum Electron 28 1
[2] Mittleman D M, Jacobsen R H and Nuss M C 1996 IEEE J. Select. Top. Quantum Electron. 2 679
[3] Chen M, Wang Y, Wang Y and Li L 2022 Front. Phys. 10 855623
[4] Son J H, Oh J S and Cheon H 2019 J. Appl. Phys. 125 190901
[5] Bhasin L and Tripathi V K 2009 Phys. Plasmas 16 103105
[6] Shi W, Wang Z, Hou L, Wang H, Wu M and Li C A 2021 Front. Phys. 9 751128
[7] Liu X, Meng Q H, Ding J, Bai, Wang J H, Zhang C, Su B and Zhang C L 2022 Chin. Phys. B 31 028701
[8] Lan C, Bi K, Li B, Zhao Y and Qu Z 2017 Opt. Express 25 29155
[9] Guan Z, Wang G L, Zhang L, Jiao Z H, Zhao S F and Zhou X X 2021 Chin. Phys. Lett. 38 054201
[10] Szymańki M, Szerling A and Kosiel K 2015 Opt. Quantum Electron. 47 843
[11] Hamster H, Sullivan A, Gordon S, White W and Falcone R W 1993 Phys. Rev. Lett. 71 2725
[12] Peng Q, Peng Z, Lang Y, Zhu Y, Zhang D, Lü Z and Zhao Z 2022 Chin. Phys. Lett. 39 053301
[13] Sheng Z M, Mima K, Zhang J and Sanuki H 2005 Phys. Rev. Lett. 94 095003
[14] Yoshii J, Lai C H, Katsouleas T, Joshi C and Mori W B 1997 Phys. Rev. Lett. 79 4194
[15] Li Y T, Wang W M, Li C and Sheng Z M 2012 Chin. Phys. B 21 095203
[16] Wu H C, Meyer-Ter-Vehn J, Ruhl H and Sheng Z M 2011 Phys. Rev. E 83 036407
[17] Rizaev G E, Seleznev L V, Mokrousova D V, Pushkarev D V and Ionin A A 2022 Opt. Lett. 47 5917
[18] Sheng W, Tang F, Zhang Z, Chen Y, Peng X Y and Sheng Z M 2011 Opt. Express 29 8676
[19] Singh D and Malik H K 2014 Phys. Plasmas 21 083105
[20] Singh D and Malik H K 2015 Plasma Sources Sci. Technology 24 045001
[21] Koulouklidis A D, Gollner C, Shumakova V, et al. 2020 Nat. Commun. 11 292
[22] Shu X F, Yu C X and Liu J 2019 Opt. Express 27 7751
[23] Zhang Z, Zhang J, Chen Y, Xia T, Wang L, Han B, He F, Sheng Z and Zhang J 2022 Ultrafast Science 2022 9870325
[24] Juneja H, Chauhan P and Panwar A 2022 Optik 268 169791
[25] Li Z Y, Zhao J, Yuan S, Jiao B Z, Bing P B, Zhang H T, Chen Z L, Tan L and Yao J Q 2022 Chin. Phys. B 31 044205
[26] Li H, Zhang Z P and Yang X 2022 Chin. Phys. B 31 035202
[27] Kumar M and Tripathi V K 2012 Phys. Plasmas 19 073109
[28] Singh D and Malik H K 2020 Phys. Rev. E 101 043207
[29] Li M, Li A Y, He B Q, Yuan S and Zeng H P 2016 Chin. Phys. B 25 044209
[30] Zhang S, Zhou W, Yin Y, Zou D, Zhao N, Xie D and Zhuo H 2022 Chin. Phys. B 32 035201
[31] Gillen-Christandl K, Gillen G D, Piotrowicz M J and Saffman M 2016 Appl. Phys. B 122 1
[32] Pathak V B, Dahiya D and Tripathi V K 2009 J. Appl. Phys. 105 013315
[33] Pai C H, Huang S Y, Kuo C C, Lin M W, Wang J and Chen S Y 2005 Phys. Plasmas 12 070707
[34] Bhasin L and Tripathi V K 2011 Phys. Plasmas 18 123106
[35] Varshney P, Singh A P, Kundu M and Gopal K 2022 Opt. Quantum Electron. 54 222
[36] Arfken G and Weber H 2005 Mathematical Methods for Physicists, 6th edn. (Boston: Elsevier AP)
[37] Malik A K, Malik H K and Nishida Y 2011 Phys. Lett. A 375 1191
[38] Varshney P, Singh A P, Upadhyaay A, Kundu M and Gopal K 2022 Optik 250 168353
[39] Divya S 2020 Plasma Res. Express 2 045003
[1] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[2] Integrated system of traditional THz time-domain spectroscopy and asynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[7] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[8] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[9] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[10] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[11] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[12] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[15] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
No Suggested Reading articles found!