1 Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell (DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature and high pressure (LTHP) conditions. The ultrafast dynamics study is performed on Bi2Sr2CaCu2O8+δ (Bi-2212) thin film under LTHP conditions. The superconducting (SC) phase transition has been observed by analyzing the ultrafast dynamics of Bi-2212 as a function of pressure and temperature. Our results suggest that the pump-probe spectroscopy system combined with a cryogenic DAC instrument is an effective method to study the physical mechanism of condensed matter physics at extreme conditions, especially for the SC phase transition.
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强) An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions 2023 Chin. Phys. B 32 067801
[1] Mao H K, Chen X J, Ding Y, Li B and Wang L2018 Rev. Mod. Phys.90 015007 [2] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H and Mao H K1994 Phys. Rev. B50 4260 [3] Duan D F, Liu Y, Tian F, Li D, Huang X L, Zhao Z L, Yu H Y, Liu B B, Tian W J and Cui T2014 Sci. Rep.4 6968 [4] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I2015 Nature525 73 [5] Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J2017 Proc. Natl. Acad. Sci.114 6990 [6] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I2019 Nature569 528 [7] Xie H, Yao Y S, Feng X L, Duan D F, Song H, Zhang Z H, Jiang S Q, Redfern S A T, Kresin V Z, Pickard C J and Cui T2020 Phys. Rev. Lett.125 217001 [8] Chen W H, Semenok D V, Kvashnin A G, Huang X L, Galasso M, Song H, Duan D F, Goncharov A F, Prakapenka V B, Oganov A R and Cui T2021 Nat. Commun.12 273 [9] Errea I, Belli F, Monacelli L, Sanna A and Flores-Livas J A2020 Nature578 66 [10] Chen W H, Semenok D V, Huang X L, Shu H Y, Li X, Duan D F, Cui T and Oganov A R2021 Phys. Rev. Lett.127 117001 [11] Hirsch J E and Marsiglio F2021 Physica C587 1353896 [12] Hirsch J E and Marsiglio F2021 Physica C584 1353866 [13] Hirsch J E and Marsiglio F2021 Matter and Radiat. at Extremes7 058401 [14] Hirsch J E2022 Nat. Sci. Rev.9 nwac086 [15] Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C2007 Rev. Mod. Phys.79 353 [16] Mertelj T, Kabanov V V, Gadermaier C, Zhigadlo N D, Katrych S, Karpinski J and Mihailovic D2009 Phys. Rev. Lett.102 117002 [17] Kusar P, Demsar J, Mihailovic D and Sugai S2005 Phys. Rev. B72 014544 [18] Chia E E M, Talbayev D, Zhu J X, Yuan H Q, Park T, Thompson J D, Panagopoulos C, Chen G F, Luo J L, Wang N L and Taylor A J2010 Phys. Rev. Lett.104 027003 [19] Gariglio S, Gabay M, Mannhart J and Triscone J M2015 Physica C514 189 [20] Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K and Zhao J M2016 Phys. Rev. Lett.116 107001 [21] Hinton J P, Koralek J D, Lu Y M, Vishwanath A, Orenstein J, Bonn D A, Hardy W N and Liang R X2013 Phys. Rev. B88 060508 [22] Luo C W, Wu I H, Cheng P C, Lin J Y, Wu K H, Uen T M, Juang J Y, Kobayashi T, Chareev D A, Volkova O S and Vasiliev A N2012 Phys. Rev. Lett.108 257006 [23] Wu Q, Zhou H X, Wu Y L, Hu L L, Ni S L, Tian Y C, Sun F, Zhou F, Dong X L, Zhao Z X and Zhao J2020 Chin. Phys. Lett.37 097802 [24] Cantaluppi A, Buzzi M, Jotzu G, Nicoletti D, Mitrano M, Pontiroli D, Ricco M, Perucchi A, Pietro P D and Cavalleri A2018 Nat. Phys.14 837 [25] Ni K, Du J, Yang J, Xu S, Cong X, Shu N, Zhang K, Wang A, Wang F, Ge L, Zhao J, Qu Y, Novoselov K S, Tan P, Su F and Zhu Y2021 Phys. Rev. Lett.126 027402 [26] Zhang K, Jiang H, Yang J, Zhang J, Zeng Z, Chen X and Su F2020 Appl. Phys. Lett.117 101105 [27] Wu Y L, Yin X, Hasaien J, Ding Y and Zhao J2020 Chin. Phys. Lett.37 047801 [28] Trigo M, Chen J, Jiang M P, Mao W L, Riggs S C, Shapiro M C, Fisher I R and Reis D A2012 Phys. Rev. B85 081102 [29] Liu X, Han J, Li Y, Cao B, Sun C, Yin H, Shi Y, Jin M, Liu C, Sun M and Ding D2019 Opt. Express27 A995 [30] Iwai S, Yamamoto K, Hiramatsu F, Nakaya H, Kawakami Y and Yakushi K2008 Phys. Rev. B77 125131 [31] Mitrano M, Cotugno G, Clark S R, Singla R, Kaiser S, Stahler J, Beyer R, Dressel M, Baldassarre L, Nicoletti D, Perucchi A, Hasegawa T, Okamoto H, Jaksch D and Cavalleri A2014 Phys. Rev. Lett.112 117801 [32] Pietryga J M, Zhuravlev K K, Whitehead M, Klimov V I and Schaller R D2008 Phys. Rev. Lett.101 217401 [33] Meng X, Pandey T, Jeong J, Fu S, Yang J, Chen K, Singh A, He F, Xu X, Zhou J, Hsieh W P, Singh A K, Lin J F and Wang Y2019 Phys. Rev. Lett.122 155901 [34] Brorson S D, Kazeroonian A, Face D W, Cheng T K, Doll G L, Dresselhaus M S, Dresselhaus G, Ippen E P, Venkatesan T, Wu X D and Inam A1990 Solid State Commun.74 1305 [35] Chia E E M, Springer D, Nair S K, Zou X Q, Cheong S A, Panagopoulos C, Tamegai T, Eisaki H, Ishida S and Uchida S2013 New J. Phys.15 103027 [36] Perfetti L, Loukakos P A, Lisowski M, Bovensiepen U, Eisaki H and Wolf M2007 Phys. Rev. Lett.99 197001 [37] Kaindl R A, CarnahanM A, Chemla D S, Oh S and Eckstein J N2004 Phys. Rev. B72 060510 [38] Cao N, Wei Y F, Zhao J M, Zhao S P, Yang Q S, Zhang Z G and Fu P M2018 Chin. Phys. Lett.25 2257 [39] Zhang Y, Zhao G Y, Wu C B and Liu X Q 2016 Cryogenics & Superconductivity 12 47 [40] Zhou Y, Guo J and Cai S2022 Nat. Phys.18 406 [41] Kabanov V V, Demsar J, Podobnik B and Mihailovic D1999 Phys. Rev. B59 1497 [42] Karlick F, Otyepková E and Baná P2015 J. Phys. Chem. C119 13194 [43] Cao N, Long Y B, Zhang Z G, Yuan J, Gao L J, Zhao B R, Zhao S P, Yang Q S, Zhao J and Fu P M2018 Physica C468 894 [44] Allen1987 Phys. Rev. Lett.59 1460 [45] Loram J W, Luo J L, Cooper J R, Liang W Y and Tallon J L 2000 Physica C341 831 [46] Boschetto D, Gamaly E G, Rode A V, Luther-Davies B, Glijer D, Garl T, Albert O, Rousse A and Etchepare J2008 Phys. Rev. Lett.100 027404 [47] Kulic M L and Dolgov O V2007 Phys. Rev. B76 132511
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.