ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A 54-fs diode-pumped Kerr-lens mode-locked Yb:LuYSiO5laser |
Yang Yu(于洋)1, Yuehang Chen(陈月航)2, Wenlong Tian(田文龙)2,4,†, Li Zheng(郑立)2, Geyang Wang(王阁阳)2, Chuan Bai(白川)2, Xuan Tian(田轩)2, Haijing Mai(麦海静)2, Yulong Su(苏玉龙)2, Jiangfeng Zhu(朱江峰)2,4,‡, and Zhiyi Wei(魏志义)3 |
1 Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China; 2 School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China; 3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 Xi'an Key Laboratory of Computational Imaging, Xi'an 710071, China |
|
|
Abstract We demonstrate a Kerr-lens mode-locked Yb:LuYSiO5 (Yb:LYSO) laser with the pulse duration of 54 fs, corresponding to a spectral bandwidth of 25 nm centered at 1062 nm. To the best of our knowledge, this is the shortest pulse duration obtained from Yb:LYSO laser. At the repetition rate of 378.3 MHz, an output power of 111.6 mW is obtained using an output coupler with 0.6% transmittance, which can maintain long-time stable mode-locking more than 13 h.
|
Received: 24 November 2022
Revised: 17 January 2023
Accepted manuscript online: 08 February 2023
|
PACS:
|
42.55.-f
|
(Lasers)
|
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774277 and 62105253), the Science and Technology Program of Xi’an (Grant No. 202005YK01), the Natural Science Basic Research Program of Shaanxi, China (Grant No. 2019JCW-03), the Natural Science Foundation of Shannxi Province, China (Grant Nos. 2022JQ-709 and 2023-JC-YB-485), and the Fundamental Research Funds for the Central Universities (Grant No. XJS222206). |
Corresponding Authors:
Wenlong Tian, Jiangfeng Zhu
E-mail: wltian@xidian.edu.cn;jfzhu@xidian.edu.cn
|
Cite this article:
Yang Yu(于洋), Yuehang Chen(陈月航), Wenlong Tian(田文龙), Li Zheng(郑立), Geyang Wang(王阁阳), Chuan Bai(白川), Xuan Tian(田轩), Haijing Mai(麦海静), Yulong Su(苏玉龙), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义) A 54-fs diode-pumped Kerr-lens mode-locked Yb:LuYSiO5laser 2023 Chin. Phys. B 32 064204
|
[1] Tian W L, Tian J R, Wang Z H, Xu X D, Xu J and Wei Z Y2018 Advanced Solid State Lasers, November 4-8, 2018, Boston, Massachusetts United States, ATh2A.5 [2] Ma J, Huang H T, Ning K J, Xu X D, Xie G Q, Qian L J, Loh K P and Tang D Y2016 Opt. Lett. 41 890 [3] Ma J, Yang F, Gao W L, Xu X D, Xu J, Shen D Y and Tang D Y2021 Opt. Lett. 46 2328 [4] Sevillano P, Georges P, Druon F, Descamps D and Cormier E2014 Opt. Lett. 39 6001 [5] Kimura S, Tani S and Kobayashi Y2019 Sci. Rep. 9 3738 [6] Wang Y R, Su X C, Xie Y Y, Gao F L, Kumar S, Wang Q L, Liu C L, Zhang B Y, Zhang B T and He J L2021 Opt. Lett. 46 1892 [7] Zhang J W, Brons J, Seidel M, Pervak V, Kalashnikov V, Wei Z Y, Apolonski A, Krausz F and Pronin O2015 The European Conference on Laser and Electro-Optics, June 21-25, 2015, Munich, Germany, PD_A_1 [8] Uemura S and Torizuka K2011 Jpn. Appl. Phys. 50 010201 [9] Drs J, Fischer J, Modsching N, Labaye F, Wittwer V and Sudmeyer T2021 Opt. Express 29 35929 [10] Tian W L, Wang Z H, Wei Long, Peng Y N, Zhang J W, Zhu Z, Zhu J F, Han H N, Jia Y L, Zheng L H, Xu J and Wei Z Y2014 Opt. Express 22 19040 [11] Lin H F, Lin Z L, Bai R X, Zhang L Z, Lin Z B, Zhang G and Chen W D2018 Advanced Solid State Lasers, November 4-8, 2018, Boston, Massachusetts United States, ATh2A.19 [12] Zeng H J, Lin H F, Lin Z L, Zhang L Z, Lin Z B, Zhang G, Petrov V, Loiko P, Mateos X, Wang L and Chen W D2021 Opt. Express 29 13496 [13] Jacquemet M, Jacquemet C, Janel N, Druon F, Balembois F, Georges P, Petit J, Viana B, Vivien D and Ferrand B2005 Appl. Phys. B 80 171 [14] Li W X, Xu S X, Pan H F, Ding L E, Zeng H P, Lu W, Guo C L, Zhao G J, Yan C F, Su L B and Xu J2006 Opt. Express 14 6681 [15] Du J, Liang X Y, Xu Y, et al.2007 Chin. Opt. Lett. 5 172 [16] Tian W L, Wang Z H, Zhu J F, et al.2017 Laser Phys. Lett. 14 045802 [17] Liu J, Wang W W, Liu C C, et al. 2010 Laser Phys. Lett. 7 104 [18] Liu J, Yang J M, Wang W W, Zheng L H, Su L B and Xu J2011 Laser Phys. 21 659 [19] Brabec T, Spielmann C, Curley P F and Krausz F1992 Opt. Lett. 17 1292 [20] Piché M and Salin F1993 Opt. Lett. 18 1041 [21] Zaouter Y, Didierjean J, Balembois F, Leclin G L, Druon F, Georges P, Petit J, Goldner P and Viana B2006 Opt. Lett. 31 119 [22] Sevillano P, Georges P, Druon F, Descamps D and Cormier E2014 Opt. Lett. 39 6001 [23] Lin Q and Sorokina I1998 Opt. Commun. 153 285 [24] Akbari R, Fedorpva K A, Rafailov E U and Major A2017 Appl. Phys. B 123 123 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|