1 Gansu All Solid-State Laser Engineering Research Center, Tianshui 741001, China; 2 Engineering Research Center of Integrated Circuit Packaging and Testing, Ministry of Education, Tianshui 741001, China; 3 School of Electronic Information and Electrical Engineering, Tianshui Normal University, Tianshui 741001, China; 4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 5 Shanghai Institute of Optics and Fine Mechanis, Chinese Academy of Sciences, Shanghai 201800, China
Abstract We demonstrate a high power, widely tunable femtosecond MgO-doped periodically poled lithium niobate (MgO:PPLN) optical parametric oscillator (OPO) at 151 MHz, pumped by a Kerr-lens mode-locked Yb:KGW laser. With a maximum pump power of 7 W, the OPO is capable of delivering as high as 2.2 W of the signal centered around 1500 nm with tunable signal spectrum ranges of 1377 nm-1730 nm at an extraction efficiency of 31.4%, which exhibits a long-term passive power stability better than 0.71% rms over 4 h. The maximum idler bandwidths of 185 nm at 3613 nm are obtained across the idler tuning ranges of 2539 nm-4191 nm. By compensating intracavity dispersion, the signal has the shortest pulse duration of 170 fs at 1428 nm.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62165012 and 61665010), the Key Research and Development Projects in Gansu Province, China (Grant No. 21YFIGE300), Gansu Province College Industry Support Plan Project (Grant Nos. 2020C-23 and 2022CYZC-59), the Natural Science Foundation of Gansu Province, China (Grant Nos. 21JR7RE173 and 20JR5RA494), Qinzhou District Science and Technology Plan Project (Grant No. 2021-SHFZG-1442), the Scientific Research Innovation Platform Construction Project of Tianshui Normal University, Gansu Province, China (Grant No. PTJ2022-06), and Science and Technology Supporting Program Project of Tianshui City (Grant Nos. 2022-FZJHK-8548, 2019-FZJHK-9891, and 2020-FZJHK-9757).
[1] Lecomte S, Paschotta R, Golling M, Ebling D and Keller U 2004 J. Opt. Soc. Am. B21 844 [2] Negel J P, Hegenbarth R, Steinmann A, Metzger B, Hoos F and Giessen H 2011 Appl. Phys. B103 45 [3] Vodopyanov K L, Fejer M M, Yu X, Harris J S, Lee Y S, Hurlbut W C, Kozlov V G, Bliss D and Lynch C 2006 Appl. Phys. Lett.89 141119 [4] Maidment L, Kara O, Schunemann P G, Piper J, McEwan K and Reid D T 2018 Appl. Phys. B124 143 [5] Figen Z G 2019 Opt. Eng.58 086101.1-086101.10 [6] Zhou L, Liu Y, Xie G H, Gu C L, Deng Z J, Zhu Z W, Ouyang C, Zuo Z, Luo D P, Wu B, Chen K F and Li W X 2020 High Power Laser Science and Engineering8 e32 [7] Kang M Q, Deng Y, Yan X W, Zeng X M, Guo Y W, Yao J Y, Zeng F, Zheng J, Zhou K, Qu C, Su J and Zhu Q 2019 Chin. Opt. Lett.17 53 [8] Yan D X, Wang Y Y, Xu D G, Liu P X, Yan C, Shi J, Liu H X, He Y, Tang L, Feng J, Guo J, Shi W, Zhong K, Tsang Y H and Yao J 2017 Photon. Res.5 82 [9] Mo Q J, Li S F, Liu Y C, Jiang X D, Zhao G, Xie Z D, Lv X J and Zhu S N 2016 Chin. Opt. Lett.14 091902 [10] Ge L C, Chen Y P, Jiang H W, Li G Z, Zhu B, Liu Y A and Chen X F 2018 Photon. Res.6 954 [11] Xi C, Wang P, Li X and Liu Z J 2019 High Power Laser Science and Engineering7 e67 [12] Phillips P J, Das S and Ebrahimzadeh M 2000 Appl. Phys. Lett.77 469 [13] Zhu J F, Zhong X, Teng H, Song J H and Wei Z Y 2007 Chin. Phys. Lett.24 2603 [14] Bhupathiraju K V, Seymour A D and Ganikhanov F 2009 Opt. Lett.34 2093 [15] Esteban-Martin A, Ramaiah-Badarla V, Petrov V and Ebrahim-Zadeh M 2011 Opt. Lett.36 1671 [16] Zhang Y, Wang J, Teng H, Fang S, Wang J, Chang G and Wei Z Y 2021 Opt. Lett.46 3115 [17] Liu S D, Wang Z W, Zhang B T, He J L, Hou J, Yang K J, Wang R H and Liu X M 2014 Chin. Phys. Lett.31 024204 [18] Tian W L, Wang Z H, Zhu J F and Wei Z Y 2016 Chin. Phys. B25 014207 [19] Tian W L, Zhu J F, Wang Z H and Wei Z Y 2015 Chin. Opt. Lett.13 011901 [20] Tian W L, Wang Z H, Meng X H, Zhang N H, Zhu J F and Wei Z Y 2016 Opt. Lett41 4851 [21] Meng X H, Wang Z H, Tian W L, He H J, Fang S B and Wei Z Y 2018 Opt. Lett43 943 [22] Zhang X B, Wang Y Z, Ju Y L, Yao B Q and Zhang Y J 2008 Chin. Opt. Lett.6 204 [23] Zhang X B, Yao B Q, Wang Y Z, Ju Y L and Zhang Y J 2007 Chin. Opt. Lett.5 426 [24] Zhong H Z, Hu B, Hu S S, Dai S Y, Li Y and Fan D Y 2020 High Power Laser Science and Engineering8 e27 [25] Guo L, Yang Y, Zhao S, Li T, Qiao W, Ma B, Nie H, Ye S, Wang R, Zhang B, Yang K and He J 2020 Opt. Express28 32916 [26] Hegenbarth R, Steinmann A, Toth G, Hebling J, Giessen H 2011 J. Opt. Soc. Am. B28 1344 [27] Luo D P, Liu Y, Gu C L, Zhu Z W, Deng Z J, Zhou L, Di Y F, Xie G H and Li W X 2020 Opt. Express28 4817 [28] Liu Y, Li W X, Luo D P, Bai D B, Wang C and Zeng H P 2016 Opt. Express24 10939 [29] Shestaev E, Hadrich S, Walther N, Eidam T, Klenke A, Seres I, Bengery Z, Jojart P, Varallyay Z, Borzsonyi A and Limpert J 2020 Opt. Lett.45 6350
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.