ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High power, widely tunable femtosecond MgO:PPLN optical parametric oscillator |
Jinfang Yang(杨金芳)1,2,3,4, Chong Wang(王翀)1,2,3, Weijun Ling(令维军)1,2,3,†, Jingwen Xue(薛婧雯)1,2,3, Xiaojuan Du(杜晓娟)1,2,3, Wenting Wang(王文婷)1,2,3, Yuxiang Zhao(赵玉祥)1,2,3, Feiping Lu(路飞平)1,2,3, Xiangbing Li(李向兵)1,2,3, Jiajun Song(宋贾俊)5, Zhaohua Wang(王兆华)4, and Zhiyi Wei(魏志义)4 |
1 Gansu All Solid-State Laser Engineering Research Center, Tianshui 741001, China; 2 Engineering Research Center of Integrated Circuit Packaging and Testing, Ministry of Education, Tianshui 741001, China; 3 School of Electronic Information and Electrical Engineering, Tianshui Normal University, Tianshui 741001, China; 4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 5 Shanghai Institute of Optics and Fine Mechanis, Chinese Academy of Sciences, Shanghai 201800, China |
|
|
Abstract We demonstrate a high power, widely tunable femtosecond MgO-doped periodically poled lithium niobate (MgO:PPLN) optical parametric oscillator (OPO) at 151 MHz, pumped by a Kerr-lens mode-locked Yb:KGW laser. With a maximum pump power of 7 W, the OPO is capable of delivering as high as 2.2 W of the signal centered around 1500 nm with tunable signal spectrum ranges of 1377 nm-1730 nm at an extraction efficiency of 31.4%, which exhibits a long-term passive power stability better than 0.71% rms over 4 h. The maximum idler bandwidths of 185 nm at 3613 nm are obtained across the idler tuning ranges of 2539 nm-4191 nm. By compensating intracavity dispersion, the signal has the shortest pulse duration of 170 fs at 1428 nm.
|
Received: 23 February 2023
Revised: 02 April 2023
Accepted manuscript online: 17 April 2023
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Yj
|
(Optical parametric oscillators and amplifiers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62165012 and 61665010), the Key Research and Development Projects in Gansu Province, China (Grant No. 21YFIGE300), Gansu Province College Industry Support Plan Project (Grant Nos. 2020C-23 and 2022CYZC-59), the Natural Science Foundation of Gansu Province, China (Grant Nos. 21JR7RE173 and 20JR5RA494), Qinzhou District Science and Technology Plan Project (Grant No. 2021-SHFZG-1442), the Scientific Research Innovation Platform Construction Project of Tianshui Normal University, Gansu Province, China (Grant No. PTJ2022-06), and Science and Technology Supporting Program Project of Tianshui City (Grant Nos. 2022-FZJHK-8548, 2019-FZJHK-9891, and 2020-FZJHK-9757). |
Corresponding Authors:
Weijun Ling
E-mail: wjlingts@sina.com
|
Cite this article:
Jinfang Yang(杨金芳), Chong Wang(王翀), Weijun Ling(令维军), Jingwen Xue(薛婧雯), Xiaojuan Du(杜晓娟), Wenting Wang(王文婷), Yuxiang Zhao(赵玉祥), Feiping Lu(路飞平), Xiangbing Li(李向兵), Jiajun Song(宋贾俊), Zhaohua Wang(王兆华), and Zhiyi Wei(魏志义) High power, widely tunable femtosecond MgO:PPLN optical parametric oscillator 2023 Chin. Phys. B 32 074204
|
[1] Lecomte S, Paschotta R, Golling M, Ebling D and Keller U 2004 J. Opt. Soc. Am. B 21 844 [2] Negel J P, Hegenbarth R, Steinmann A, Metzger B, Hoos F and Giessen H 2011 Appl. Phys. B 103 45 [3] Vodopyanov K L, Fejer M M, Yu X, Harris J S, Lee Y S, Hurlbut W C, Kozlov V G, Bliss D and Lynch C 2006 Appl. Phys. Lett. 89 141119 [4] Maidment L, Kara O, Schunemann P G, Piper J, McEwan K and Reid D T 2018 Appl. Phys. B 124 143 [5] Figen Z G 2019 Opt. Eng. 58 086101.1-086101.10 [6] Zhou L, Liu Y, Xie G H, Gu C L, Deng Z J, Zhu Z W, Ouyang C, Zuo Z, Luo D P, Wu B, Chen K F and Li W X 2020 High Power Laser Science and Engineering 8 e32 [7] Kang M Q, Deng Y, Yan X W, Zeng X M, Guo Y W, Yao J Y, Zeng F, Zheng J, Zhou K, Qu C, Su J and Zhu Q 2019 Chin. Opt. Lett. 17 53 [8] Yan D X, Wang Y Y, Xu D G, Liu P X, Yan C, Shi J, Liu H X, He Y, Tang L, Feng J, Guo J, Shi W, Zhong K, Tsang Y H and Yao J 2017 Photon. Res. 5 82 [9] Mo Q J, Li S F, Liu Y C, Jiang X D, Zhao G, Xie Z D, Lv X J and Zhu S N 2016 Chin. Opt. Lett. 14 091902 [10] Ge L C, Chen Y P, Jiang H W, Li G Z, Zhu B, Liu Y A and Chen X F 2018 Photon. Res. 6 954 [11] Xi C, Wang P, Li X and Liu Z J 2019 High Power Laser Science and Engineering 7 e67 [12] Phillips P J, Das S and Ebrahimzadeh M 2000 Appl. Phys. Lett. 77 469 [13] Zhu J F, Zhong X, Teng H, Song J H and Wei Z Y 2007 Chin. Phys. Lett. 24 2603 [14] Bhupathiraju K V, Seymour A D and Ganikhanov F 2009 Opt. Lett. 34 2093 [15] Esteban-Martin A, Ramaiah-Badarla V, Petrov V and Ebrahim-Zadeh M 2011 Opt. Lett. 36 1671 [16] Zhang Y, Wang J, Teng H, Fang S, Wang J, Chang G and Wei Z Y 2021 Opt. Lett. 46 3115 [17] Liu S D, Wang Z W, Zhang B T, He J L, Hou J, Yang K J, Wang R H and Liu X M 2014 Chin. Phys. Lett. 31 024204 [18] Tian W L, Wang Z H, Zhu J F and Wei Z Y 2016 Chin. Phys. B 25 014207 [19] Tian W L, Zhu J F, Wang Z H and Wei Z Y 2015 Chin. Opt. Lett. 13 011901 [20] Tian W L, Wang Z H, Meng X H, Zhang N H, Zhu J F and Wei Z Y 2016 Opt. Lett 41 4851 [21] Meng X H, Wang Z H, Tian W L, He H J, Fang S B and Wei Z Y 2018 Opt. Lett 43 943 [22] Zhang X B, Wang Y Z, Ju Y L, Yao B Q and Zhang Y J 2008 Chin. Opt. Lett. 6 204 [23] Zhang X B, Yao B Q, Wang Y Z, Ju Y L and Zhang Y J 2007 Chin. Opt. Lett. 5 426 [24] Zhong H Z, Hu B, Hu S S, Dai S Y, Li Y and Fan D Y 2020 High Power Laser Science and Engineering 8 e27 [25] Guo L, Yang Y, Zhao S, Li T, Qiao W, Ma B, Nie H, Ye S, Wang R, Zhang B, Yang K and He J 2020 Opt. Express 28 32916 [26] Hegenbarth R, Steinmann A, Toth G, Hebling J, Giessen H 2011 J. Opt. Soc. Am. B 28 1344 [27] Luo D P, Liu Y, Gu C L, Zhu Z W, Deng Z J, Zhou L, Di Y F, Xie G H and Li W X 2020 Opt. Express 28 4817 [28] Liu Y, Li W X, Luo D P, Bai D B, Wang C and Zeng H P 2016 Opt. Express 24 10939 [29] Shestaev E, Hadrich S, Walther N, Eidam T, Klenke A, Seres I, Bengery Z, Jojart P, Varallyay Z, Borzsonyi A and Limpert J 2020 Opt. Lett. 45 6350 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|