Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047302    DOI: 10.1088/1674-1056/acac16
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films

Liping Zhang(张丽萍)1,2,†, Zuyu Xu(徐祖雨)3, Xiaojie Li(黎晓杰)3, Xu Zhang(张旭)2, Mingyang Qin(秦明阳)2,4, Ruozhou Zhang(张若舟)2,5, Juan Xu(徐娟)2, Wenxin Cheng(程文欣)2,5, Jie Yuan(袁洁)2,6, Huabing Wang(王华兵)3,7, Alejandro V. Silhanek8, Beiyi Zhu(朱北沂)2, Jun Miao(苗君)1, and Kui Jin(金魁)2,5,9
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China;
4 Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
5 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
6 Key Laboratory of Vacuum Physics, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China;
7 Purple Mountain Laboratories, Nanjing 211111, China;
8 Experimental Physics of Nanostructured Materials, Q-MAT, CESAM, Université de Liège, B-4000 Sart Tilman, Belgium;
9 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  High quality Nb films were successfully prepared on both flexible polyimide (PI) and rigid Al2O3 substrates and their transport properties were systematically studied at various applied currents, external magnetic fields, and sample orientations. It is found that a curved Nb/PI film exhibits quite different superconducting transition and vortex dynamics compared to the flat Nb/Al2O3 film. For the curved Nb/PI film, smooth superconducting transitions were obtained at low currents, while unexpected cascade structures were revealed in the ρ(T) curves at high currents. We attribute this phenomenon to the gradient distribution of vortex density together with a variation of superconductivity along the curved film. In addition, reentrant superconductivity was induced in the curved Nb/PI thin film by properly choosing the measurement conditions. We attribute this effect to the vortex pinning from both in-plane vortices and out-of-plane vortices. This work reveals the complex transport properties of curved superconducting thin films, providing important insights for further theoretical investigations and practical developments of flexible superconductors.
Keywords:  vortex dynamics      flexible superconducting films      transport properties      superconducting films  
Received:  21 October 2022      Revised:  02 December 2022      Accepted manuscript online:  16 December 2022
PACS:  73.61.-r (Electrical properties of specific thin films)  
  74.25.Wx (Vortex pinning (includes mechanisms and flux creep))  
  74.78.-w (Superconducting films and low-dimensional structures)  
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2021YFA0718700, 2018YFB0704102, 2017YFA0303003, 2017YFA0302902, 2016YFA0300301, and 2021YFA0718802), the National Natural Science Foundation of China (Grant Nos. 11927808, 11834016, 118115301, 119611410, 11961141008, 61727805, and 11961141002), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) (Grant Nos. QYZDB-SSW-SLH008 and QYZDY-SSW-SLH001), CAS Interdisciplinary Innovation Team, the Strategic Priority Research Program (B) of CAS (Grant Nos. XDB25000000 and XDB33000000), the Beijing Natural Science Foundation (Grant No. Z190008), and the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101340002). M.Q. thanks the support from the China Postdoctoral Science Foundation (Grant No. 2022M711497).
Corresponding Authors:  Liping Zhang     E-mail:  lipingzhang@iphy.ac.cn

Cite this article: 

Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁) Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films 2023 Chin. Phys. B 32 047302

[1] Tinkham M 1996 Introduction to superconductivity (New York: McGraw-Hill)
[2] Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
[3] Zhu B Y, Marchesoni F, Moshchalkov V V and Nori F 2003 Phys. Rev. B 68 014514
[4] Pathirana W P M R and Gurevich A 2021 Phys. Rev. B 103 184518
[5] Córdoba R, Baturina T I, Sesé J, Mironov A Yu, Teresa J M De, Ibarra M R, Nasimov D A, KGutakovskii A, Latyshev A V, Guillamón I, Suderow H, Vieira S, Baklanov M R, Palacios J J and Vinokur V M 2013 Nat. Commun. 4 1437
[6] Lin Z, Qin M, Li D, Shen P, Zhang L, Feng Z, Sha P, Miao J, Yuan J, Dong X, Dong C, Qin Q and Jin K 2021 Supercond. Sci. Technol. 34 015001
[7] Lee C S, Jankó B, Derényi I and Barabási A L 1999 Nature 400 337
[8] Ji J, Yuan J, He G, Jin B, Zhu B, Kong X, Jia X, Kang L, Jin K and Wu P 2016 Appl. Phys. Lett. 109 242601
[9] Adami O A, Cerbu D, Cabosart D, Motta M, Cuppens J, Ortiz W A, Moshchalkov V V, Hackens B, Delamare R, Van de Vondel J and Silhanek A V 2013 Appl. Phys. Lett. 102 052603
[10] Koelle D, Kleiner R, Ludwig F, Dantsker E and Clarke J 1999 Rev. Mod. Phys. 71 631
[11] Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C and Sobolewski R 2001 Appl. Phys. Lett. 79 705
[12] Taylor G G, Morozov D V, Lennon C T, Barry P S, Sheagren C and Hadfield R H 2021 Appl. Phys. Lett. 118 191106
[13] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[14] Clarke J and Wilhelm F K 2008 Nature 453 1031
[15] Bick M, Leslie K E, Binks R A, Tilbrook D L, Lam S K H, Gnanarajan R, Du J and Foley C P 2004 Appl. Phys. Lett. 84 5347
[16] Huang J, Wang H, Wang H, Zhang B, Qian X and Wang H 2019 IEEE Trans. Appl. Supercond. 29 7500604
[17] Han X, Gao M, Wu Y, Mu G, Zhang M, Mei T, Chu P K, Xie X, Hu T and Di Z 2020 J. Mater. Chem. C 8 14605
[18] Makarov D, Volkov O M, Kákay A, Pylypovskyi O V, Budinská B and Dobrovolskiy O V 2022 Adv. Mater. 34 2101758
[19] Wang J, Lin M F, Park S and Lee P S 2018 Mater. Today 21 508
[20] Chortos A, Liu J and Bao Z 2016 Nat. Mater. 15 937
[21] Kenry, Yeo J C and Lim C T 2016 Microsyst. Nanoeng. 2 16043
[22] Mo R, Rooney D, Sun K and Yang H Y 2017 Nat. Commun. 8 13949
[23] Yao B, Zhang J, Kou T, Song Y, Liu T and Li Y 2017 Adv. Sci. 4 1700107
[24] Liang J, Li L, Niu X, Yu Z and Pei Q 2013 Nat. Photonics 7 817
[25] Romaguera A R de C, Doria M M and Peeters F M 2007 Phys. Rev. B 75 184525
[26] Du Q 2005 J. Math. Phys. 46 095109
[27] Xu B, Milošević M V and Peeters F M 2009 New J. Phys. 11 013020
[28] Fomin V M and Dobrovolskiy O V 2022 Appl. Phys. Lett. 120 090501
[29] McKeen L W 2017 Polyimides, in Film Properties of Plastics and Elastomers (William Andrew Publishing) Chap. 7 pp. 147-185
[30] Tian W, Chen S, Xu Z, Li D, Du H, Wei Z, Wu K, Sun H, Dong S, Lv Y, Wang Y L, Koelle D, Kleiner R, Wang H and Wu P 2021 Supercond. Sci. Technol. 34 115015
[31] Xu Z, Tian W, Chen S, Yue W, Du H, Li D, Wei Z, Lyu Y Y, Sun H, Wang Y L, Sun G, Chen J, Jin B, Wang H and Wu P 2021 Supercond. Sci. Technol. 34 125012
[32] Pautrat A, Scola J, Goupil C, Simon C, Villard C, Domengés B, Simon Y, Guilpin C and Méchin L 2004 Phys. Rev. B 69 224504
[33] Yanilkin I V, Gumarov A I, Rogov A M, Yusupov R V and Tagirov L R 2021 Tech. Phys. 66 263
[34] Prokhorov V G 1998 Low. Temp. Phys. 24 410
[35] Brandt E H 1993 Phys. Rev. B 48 6699
[36] Brandt E H 1995 Rep. Prog. Phys. 58 1465
[37] Vlasko-Vlasov V K, Colauto F, Buzdin A A, Carmo D, Andrade A M H, Oliveira A A M, Ortiz W A, Rosenmann D and Kwok W K 2016 Phys. Rev. B 94 184502
[38] Zhu C J, Liu L, Song P B, Deng H B, Yi C J, Sun Y K, Wu R, Yin J X, Shi Y, Wang Z and Pan S H 2021 Chin. Phys. B 30 106802
[39] Herrera E, Guillamón I, Galvis J A, Correa A, Fente A, Vieira S, Suderow, Martynovich A Y and Kogan V G 2017 Phys. Rev. B 96 184502
[40] Zhang S S, Yin J X, Dai G, Zheng H, Chang G, Belopolski I, Wang X, Lin H, Wang Z, Jin C and Hasan M Z 2019 Phys. Rev. B 99 161103
[41] Mühlbauer S, Pfleiderer C, Böni P, Laver M, Forgan E M, Fort D, Keiderling U and Behr G 2009 Phys. Rev. Lett. 102 136408
[42] Silhanek A, Guimpel J, Civale L, Lanza H and Levy P 2000 Physica C 341 1217
[43] Silhanek A, Civale L, Candia S, Nieva G, Pasquini G and Lanza H 1999 Phys. Rev. B 59 13620
[44] Paramanik U B, Das D, Prasad R and Hossain Z 2013 J. Phys.: Condens. Matter. 25 265701
[45] Knebel G, Knafo W, Pourret A, Niu Q, Vališka M, Braithwaite D, Lapertot G, Nardone M, Zitouni A, Mishra S, Sheikin I, Seyfarth G, Brison J P, Aoki D and Flouquet J 2019 J. Phys. Soc. Jpn. 88 063707
[46] Womack F N, Adams P W, Valles J M and Cate-lani G 2019 Phys. Rev. B 100 174505
[47] Zhang E, Xu X, Huang C, Zou Y C, Ai L, Liu S, Leng P, Jia Z, Zhang Y, Zhao M, Li Z, Yang Y, Liu J, Haigh S J, Mao Z and Xiu F 2021 Nano Lett. 21 288
[48] Fijał kowski M, Maśka M M, Deniszczyk J and Ślebarski A 2021 Phys. Rev. B 104 165306
[49] Ran S, Liu I L, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J and Butch N P 2019 Nat. Phys. 15 1250
[50] Wang Y L, Glatz A, Kimmel G J, Aran-son I S, Thoutam L R, Xiao Z L, Berdiy-orov G R, Peeters F M, Crabtree G W and Kwok W K 2017 Proc. Natl. Acad. Sci. USA 114 E10274
[51] Berdiyorov G R, Chao X H, Peeters F M, Wang H B, Moshchalkov V V and Zhu B Y 2012 Phys. Rev. B 86 224504
[52] Saint-James D and Gennes P G 1963 Phys. Lett. 7 306
[53] Barnes L J and Fink H J 1966 Phys. Rev. 149 186
[54] Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G and Chen X L 2021 Chin. Phys. Lett. 38 057402
[55] Cheng Z H, Lei B, Luo X G, Ying J J, Wang Z Y, Wu T and Chen X H 2021 Chin. Phys. B 30 097403
[56] Vijayanand H V, Arunkumar L, Gurubasawaraj P M, Sharma P M V, Basavaraja S, Saleem A, Venkataraman A, Ghanwat A and Maldar N N 2007 J. Appl. Polym. Sci. 103 834
[1] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[2] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[3] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[4] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[5] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[6] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[7] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[8] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets"
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[9] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[10] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[11] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[12] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[13] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[14] Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉). Chin. Phys. B, 2018, 27(7): 076801.
[15] Non-monotonic dependence of current upon i-width in silicon p-i-n diodes
Zheng-Peng Pang(庞正鹏), Xin Wang(王欣), Jian Chen(陈健), Pan Yang(杨盼), Yang Zhang(张洋), Yong-Hui Tian(田永辉), Jian-Hong Yang(杨建红). Chin. Phys. B, 2018, 27(6): 066106.
No Suggested Reading articles found!