Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047401    DOI: 10.1088/1674-1056/acac1a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices

Di Liu(刘迪)1,2, Xingyu Wang(王兴玉)1,2, Zezhong Li(李泽众)1,2, Xiaoyan Ma(马肖燕)1,2, and Shiliang Li(李世亮)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Uniaxial pressure or strain can introduce a symmetry-breaking distortion on the lattice and may alter the ground states of a material. Compared to hydrostatic pressure, a unique feature of the uniaxial-pressure measurements is that a tensile force can be applied and thus a "negative" pressure can be achieved. In doing so, both ends of the sample are usually glued on the frame of the uniaxial-pressure device. The maximum force that can be applied onto the sample is sometimes limited by the shear strength of the glue, the quality of the interface between the sample and the glue, etc. Here we use focused ion beam to reduce the width of the middle part of the sample, which can significantly increase the effective pressure applied on the sample. By applying this technique to a home-made piezobender-based uniaxial-pressure device, we can easily increase the effective pressure by one or two orders of magnitude as shown by the change of the superconducting transition temperature of an iron-based superconductor. Our method thus provides a possible way to increase the upper limit of the pressure for the uniaxial-pressure devices.
Keywords:  uniaxial pressure      iron-based superconductors      focused-ion-beam  
Received:  04 November 2022      Revised:  09 December 2022      Accepted manuscript online:  16 December 2022
PACS:  74.62.Fj (Effects of pressure)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403402, 2021YFA1400401, 2020YFA0406003, and 2017YFA0302903), the National Natural Science Foundation of China (Grant Nos. 11961160699 and 11874401), and the Chinese Academy of Sciences (Grant Nos. XDB33000000 and GJTD-2020-01).
Corresponding Authors:  Shiliang Li     E-mail:  slli@iphy.ac.cn

Cite this article: 

Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮) Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices 2023 Chin. Phys. B 32 047401

[1] Shapiro M C, Hlobil P, Hristov A T, Maharaj A V and Fisher I R 2015 Phys. Rev. B 92 235147
[2] Chu J H, Kuo H H, Analytis J G and Fisher I R 2012 Science 337 6095
[3] Riggs S C, Shapiro M, Maharaj A V, Raghu S, Bauer E, Baumbach R, Giraldo-Gallo P, Wartenbe M and Fisher I 2015 Nat. Commun. 6 6425
[4] Kuo H H, Chu J H, Palmstrom J C, Kivelson S A and Fisher I R 2016 Science 352 958
[5] Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y F, Luo H and Li S 2016 Phys. Rev. Lett. 117 157002
[6] Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y F, Luo H and Li S 2017 Phys. Rev. Lett. 119 157001
[7] Ishida K, Tsujii M, Hosoi S, Mizukami Y, Ishida S, Iyo A, Eisaki H, Wolf T, Grube K, Löhneysen H, Fernandes R M and Shibauchi T 2020 Proc. Natl. Acad. Sci. USA 117 6424
[8] Ishida K, Hosoi S, Teramoto Y, Usui T, Mizukami Y, Itaka K, Matsuda Y, Watanabe T and Shibauchi T 2020 J. Phys. Soc. Jpn. 89 064707
[9] Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P and Hicks C W 2021 Phys. Rev. X 11 021038
[10] Wiecki P, Frachet M, Haghighirad A A, Wolf T, Meingast C, Heid R and Böohmer A E 2021 Nat. Commun. 12 4824
[11] Xie T, Liu Z, Gu Y, Gong D, Mao H, Liu J, Hu C, Ma X, Yao Y, Zhao L, Zhou X, Schneeloch J, Gu G, Danilkin S, feng Yang Y, Luo H and Li S 2022 J. Phys.: Condens. Matter 34 334001
[12] Wang X, Gong D, Liu B, Ma X, Zhao J, Wang P, Sheng Y, Guo J, Sun L, Zhang W, Lai X, Tan S, Feng Y, and Li S 2022 Chin. Phys. Lett. 39 107101
[13] Mao H C, Gong D L, Ma X Y, Luo H Q, Yang Y F, Shan L and Li S L 2018 Chin. Phys. B 27 087402
[14] Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y and Mackenzie A P 2014 Science 344 6181
[15] Steppke A, Zhao L, Barber M E, Scaffidi T, Jerzembeck F, Rosner H, Gibbs A S, Maeno Y, Simon S H, Mackenzie A P and Hicks C W 2017 Science 355 6321
[16] Stern A, Dzero M, Galitski V M, Fisk Z and Xia J 2017 Nat. Mater. 16 708
[17] Kim H H, Souliou S M, Barber M E, Lefrancois E, Minola M, Tortora M, Heid R, Nandi N, Borzi R A, Garbarino G, Bosak A, Porras J, Loew T, König M, Moll P J W, Mackenzie A P, Keimer B, Hicks C W and Tacon M L 2018 Science 362 1040
[18] Malinowski P, Jiang Q, Sanchez J J, Mutch J, Liu Z, Went P, Liu J, Ryan P J, Kim J W and Chu J H 2020 Nat. Phys. 16 1189
[19] Hicks C W, Barber M E, Edkins S D, Brodsky D O and Mackenzie A P 2014 Rev. Sci. Instrum. 85 065003
[20] Liu Z, Gu Y, Hong W, Xie T, Gong D, Ma X, Liu J, Hu C, Zhao L, Zhou X, Fernandes R M, Yang Y F, Luo H and Li S 2019 Phys. Rev. Research 1 033154
[21] Chen Y, Lu X, Wang M, Luo H and Li S 2011 Supercond. Sci. Technol. 24 065004
[22] Li Y S, Borth R, Hicks C W, Mackenzie A P and Nicklas M 2020 Rev. Sci. Instrum. 91 103903
[23] Ikeda M S, Straquadine J A W, Hristov A T, Worasaran T, Palmstrom J C, Sorensen M, Walmsley P and Fisher I R 2019 Rev. Sci. Instrum. 90 083902
[24] Straquadine J A W, Ikeda M S and Fisher I R 2022 Phys. Rev. X 12 021046
[25] Kissikov T, Sarkar R, Lawson M, Bush B T, Timmons E I, Tanatar M A, Prozorov R, Bud'ko S L, Canfield P C, Fernandes R M and Curro N J 2018 Nat. Commun. 9 1058
[26] Luo Y, Pustogow A, Guzman P, Dioguardi A P, Thomas S M, Ronning F, Kikugawa N, Sokolov D A, Jerzembeck F, Mackenzie A P, Hicks C W, Bauer E D, Mazin I I and Brown S E 2019 Phys. Rev. X 9 021044
[1] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[2] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[3] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[4] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[5] Nonlinear uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2
Hui-Can Mao(毛慧灿), Dong-Liang Gong(龚冬良), Xiao-Yan Ma(马肖燕), Hui-Qian Luo(罗会仟), Yi-Feng Yang(杨义峰), Lei Shan(单磊), Shi-Liang Li(李世亮). Chin. Phys. B, 2018, 27(8): 087402.
[6] Comparison of band structure and superconductivity in FeSe0.5Te0.5 and FeS
Yang Yang(杨阳), Shi-Quan Feng(冯世全), Yuan-Yuan Xiang(向圆圆), Hong-Yan Lu(路洪艳), Wan-Sheng Wang(王万胜). Chin. Phys. B, 2017, 26(12): 127401.
[7] Thermal fluctuation conductivity and dimensionality in iron-based superconductors
Rui Wang(王蕊), Ding-Ping Li(李定平). Chin. Phys. B, 2016, 25(9): 097401.
[8] Hybrid crystals of cuprates and iron-based superconductors
Xia Dai(代霞), Cong-Cong Le(勒聪聪), Xian-Xin Wu(吴贤新), Jiang-Ping Hu(胡江平). Chin. Phys. B, 2016, 25(7): 077402.
[9] Crystal chemistry and structural design of iron-based superconductors
Jiang Hao (蒋好), Sun Yun-Lei (孙云蕾), Xu Zhu-An (许祝安), Cao Guang-Han (曹光旱). Chin. Phys. B, 2013, 22(8): 087410.
[10] Spin, charge, and orbital orderings in iron-based superconductors
Jiang Qing (江庆), Kang Yao-Tai (康耀太), Yao Dao-Xin (姚道新). Chin. Phys. B, 2013, 22(8): 087402.
[11] Review of nuclear magnetic resonance studies on iron-based superconductors
Ma Long (马龙), Yu Wei-Qiang (于伟强). Chin. Phys. B, 2013, 22(8): 087414.
No Suggested Reading articles found!