Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087503    DOI: 10.1088/1674-1056/acbdec
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hysteresis loss free soft magnetic ferrites based on Larmor precession

Shuang-Jiu Feng(冯双久)1,†, Xin-Li Zhao(赵幸丽)1, Shou-Jin Zhu(朱守金)1, Qing-Rong Lv(吕庆荣)2, Xu-Cai Kan(阚绪材)1, and Xian-Song Liu(刘先松)1
1. Engineering Technology Research Center of Magnetic Materials of Anhui Province, School of Materials Science and Engineering, Anhui University, Hefei 230601, China;
2. School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
Abstract  A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the ferrite, the response to the longitudinal alternating electromagnetic field changes from the original domain wall displacements and spin rotations to the precession of magnetization around the transverse field, and the hysteresis loss disappears in the ferrites. Both theoretical and experimental results indicate that the permeability and magnetic loss in the ferrite can be controlled by adjusting the transverse magnetic field. A higher Q value with relatively low permeability can be achieved by increasing the transverse field, which ensures that the ferrite can be operated at high frequencies, with magnetic loss being very low.
Keywords:  ferrites      Larmor precession      magnetic losses      hysteresis loss free  
Received:  18 November 2022      Revised:  17 February 2023      Accepted manuscript online:  22 February 2023
PACS:  75.50.Gg (Ferrimagnetics)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
Fund: Project supported by the National Key Research and Development Program of China(Grant Nos.2022YFB3504800 and 2021YFB3502400), the Key Research and Development Plan of Anhui Province, China (Grant No.202003c08020012), and the Key Program of Education Department of Anhui Province, China (Grant No.KJ2019ZD03).
Corresponding Authors:  Shuang-Jiu Feng     E-mail:  fengsj@ahu.edu.cn

Cite this article: 

Shuang-Jiu Feng(冯双久), Xin-Li Zhao(赵幸丽), Shou-Jin Zhu(朱守金),Qing-Rong Lv(吕庆荣), Xu-Cai Kan(阚绪材), and Xian-Song Liu(刘先松) Hysteresis loss free soft magnetic ferrites based on Larmor precession 2023 Chin. Phys. B 32 087503

[1] Gutfleisch O, Willard M W, Bruck E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[2] Silveyra J M, Ferrara E, Huber D L and Monson T C 2018 Science 362 418
[3] Williams H J, Shockley W and Kittel C 1950 Phys. Rev. 80 1090
[4] Bertotti G 1988 IEEE Trans. Magn. 24 621
[5] Colaiori F, Durin G and Zapperi S 2006 Phys. Rev. Lett. 97 257203
[6] Stoppels D 1996 J. Magn. Magn. Mater. 160 323
[7] Perigo E A, Weidenfeller B, Kollar P and Fuzer J 2018 Appl. Phys. Rev. 5 031301
[8] Liao S B 1998 Ferromagnetism, Vol. 3, (Beijing: Chinese Science Press) pp. 268-280
[9] Snoek J L 1948 Physica 14 207
[10] van der Zaag P J, van der Valk P J and Rekveldt M Th 1996 Appl. Phys. Lett. 69 2927
[11] van der Zaag P J, Kolenbrander M and Rekveldt M Th 1998 J. Appl. Phys. 83 6870
[12] Topfer J and Angermann A 2015 J. Appl. Phys. 117 17A504
[13] Wang X Y, Yi S B, Wu C, Bai G H and Yan M 2021 J. Magn. Magn. Mater. 538 168324
[14] Zheng Z L, Zhang H W, Yang Q H and Jia L J 2014 J. Amer. Ceram. Soc. 97 2016
[15] Tang X L, Su H and Zhang H W 2012 Chin. Phys. Lett. 29 087501
[16] Wu X H, Xu J K, Huo X Y, Chen J B, Zhang Q, Huang F Y, Li Y X, Su H and Li L Z 2021 J. Eur. Ceram. Soc. 41 5193
[17] Andalib P and Harris V G 2020 J. Alloys Compd. 832 153131
[18] El Maazouzi A, Masrour R, Jabar A and Hamedoun M 2019 Chin. Phys. B 28 057504
[19] Ying Y, Xiong X B, Wang N C, Zheng J W, Yu J, Li W C, Qiao L, Cai W, Li J, Huang H and Che S L 2021 J. Eur. Ceram. Soc. 41 5924
[20] Fan X Y, Bai G H, Zhang Z H, Chen Q M, Jin J Y, Xu J F, Zhang X F and Yan M 2022 J. Adv. Ceram. 11 912
[21] Lebourgeois R, Le Fur C, Labeyrie M, Pate M and Ganne J P 1996 J. Magn. Magn. Mater. 160 329
[22] Feng S J, Ni J L, Hu F, Kan X C, Lv Q R, Yang Y J and Liu X S 2020 Appl. Phys. Lett. 117 122402
[23] Fano W G, Boggi S and Razzitte A C 2011 J. Magn. Magn. Mater. 323 1708
[24] Feng S J, Li J, Huang S G, Liu X S and Zhong Z Y 2016 J. Alloys Compd. 660 398
[25] Feng S J, Ni J L, Zhou X H, Wu X S, Huang S G and Liu X S 2018 J. Magn. Magn. Mater. 447 21
[1] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[2] Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route
Furhaj Ahmed Sheikh, Muhammad Khalid, Muhammad Shahzad Shifa, H M Noor ul Huda Khan Asghar, Sameen Aslam, Ayesha Perveen, Jalil ur Rehman, Muhammad Azhar Khan, Zaheer Abbas Gilani. Chin. Phys. B, 2019, 28(8): 088701.
[3] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[4] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[5] Evolution of structure and physical properties in Al-substituted Ba-hexaferrites
Alex Trukhanov, Larisa Panina, Sergei Trukhanov, Vitalii Turchenko, Mohamed Salem. Chin. Phys. B, 2016, 25(1): 016102.
No Suggested Reading articles found!