CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Impact of annealing temperature on the ferroelectric properties of W/Hf0.5Zr0.5O2/W capacitor |
Dao Wang(王岛)1,3, Yan Zhang(张岩)2,3,†, Yongbin Guo(郭永斌)4, Zhenzhen Shang(尚真真)1, Fangjian Fu(符方健)1, and Xubing Lu(陆旭兵)3,‡ |
1 College of Science, Qiongtai Normal University, Key Laboratory of Child Cognition and Behavior Development of Hainan Province, Haikou 571127, China; 2 College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China; 3 Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; 4 Key Laboratory of UWB and THz of Shandong Academy of Sciences, Institute of Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China |
|
|
Abstract Crystallization annealing is a crucial process for the formation of the ferroelectric phase in HfO2-based ferroelectric thin films. Here, we systematically investigate the impact of the annealing process, with temperature varied from 350 ℃ to 550 ℃, on the electricity, ferroelectricity and reliability of a Hf0.5Zr0.5O2 (HZO; 7.5 nm) film capacitor. It was found that HZO film annealed at a low temperature of 400 ℃ can effectively suppress the formation of the monoclinic phase and reduce the leakage current. HZO film annealed at 400 ℃ also exhibits better ferroelectric properties than those annealed at 350 ℃ and 550 ℃. Specifically, the 400 ℃-annealed HZO film shows an outstanding 2Pr value of 54.6 upmu C·cm-2 at ±3.0 MV·cm-1, which is relatively high compared with previously reported values for HZO film under the same electric field and annealing temperature. When the applied electric field increases to ±5.0 MV·cm-1, the 2Pr value can reach a maximum of 69.6 upmu C·cm-2. In addition, the HZO films annealed at 400 ℃ and 550 ℃ can endure up to bout 2.3×108 cycles under a cycling field of 2.0 MV·cm-1 before the occurrence of breakdown. In the 400 ℃-annealed HZO film, 72.1% of the initial polarization is maintained while only 44.9% is maintained in the 550 ℃-annealed HZO film. Our work demonstrates that HZO film with a low crystallization temperature (400 ℃) has quite a high ferroelectric polarization, which is of significant importance in applications in ferroelectric memory and negative capacitance transistors.
|
Received: 30 August 2022
Revised: 23 November 2022
Accepted manuscript online: 08 December 2022
|
PACS:
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
85.50.Gk
|
(Non-volatile ferroelectric memories)
|
|
77.55.D-
|
|
|
77.55.fp
|
(Other ferroelectric films)
|
|
Fund: Project supported by Hainan Provincial Natural Science Foundation of China (Grant No. 523QN257), Collegelevel Scientific Research Foundation of Qiongtai Normal University (Grant No. qtqn202215), the Innovation and Entrepreneurship Training Program for College Students (Grant No. 202213811016), Science and Technology Program of Henan (Grant No. 232102210182), Scientific Research Foundation of Henan Normal University (Grant No. 20230196), Natural Science Foundation of Shandong Province (Grant No. ZR2023QA047), Foundation of PeiXin (Grant No. 2023PX027), Science and technology smes innovation ability improvement project (Grant No. 2023TSGC0154), and the National Natural Science Foundation of China (Grant No. 62174059). |
Corresponding Authors:
Yan Zhang, Xubing Lu
E-mail: 1053527200@qq.com;luxubing@m.scnu.edu.cn
|
Cite this article:
Dao Wang(王岛), Yan Zhang(张岩), Yongbin Guo(郭永斌), Zhenzhen Shang(尚真真), Fangjian Fu(符方健), and Xubing Lu(陆旭兵) Impact of annealing temperature on the ferroelectric properties of W/Hf0.5Zr0.5O2/W capacitor 2023 Chin. Phys. B 32 097701
|
[1] Chen H Y, Zhou X F, Tang L, Chen Y H, Luo H, Yuan X, Bowen C R and Zhang D 2022 Appl. Phys. Rev. 9 011307 [2] Ali F, Ali T, Lehninger D, Sünbül A, Viegas A, Sachdeva R, Abbas A, Czernohorsky M and Seidel K 2022 Adv. Funct. Mater. 32 2201737 [3] Zhao D, Chen Z B and Liao X Z 2022 Microstructures 2 2022007 [4] Migita S, Ota H, Shibuya K, Yamada H, Sawa A, Matsukawa T and Toriumi A 2019 Jpn. J. Appl. Phys. 58 SBBA07 [5] Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Müller J, Kersch A, Schroeder U, Mikolajick T and Hwang C S 2015 Adv. Mater. 27 1811 [6] Kim S J, Mohan J, Summerfelt S R and Kim J 2018 JOM 71 246 [7] Park M H, Lee D H, Yang K, Park J Y, Yu G T, Park H W, Materano M, Mittmann T, Lomenzo P D, Mikolajick T, Schroeder U and Hwang C S 2020 J. Mater. Chem. C 8 10526 [8] Kim H J, An Y, Jung Y C, Mohan J, Yoo J G, Kim Y I, Hernandez-Arriaga H, Kim H S, Kim J and Kim S J 2021 Phys. Status. Solidi. RRL 15 2100028 [9] Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Hyun S D, Mikolajick T, Schroeder U and Hwang C S 2018 Nanoscale 10 716 [10] Lin Y C, McGuire F and Franklin A D 2018 J. Vac. Sci. Technol. B 36 011204 [11] Mittmann T, Fengler F P G, Richter C, Park M H, Mikolajick T and Schroeder U 2017 Microelectron. Eng. 178 48 [12] Park M H, Kim H J, Kim Y J, Lee W, Moon T and Hwang C S 2013 Appl. Phys. Lett. 102 242905 [13] Yoon J S, Tewari A, Shin C and Jeon S 2019 IEEE Electron. Device Lett. 40 1076 [14] Lee Y, Hsain H A, Fields S S, Jaszewski S T, Horgan M D, Edgington P G, Ihlefeld J F, Parsons G N and Jones J L 2021 Appl. Phys. Lett. 118 012903 [15] Kim S J, Mohan J, Lee J, Lee J S, Lucero A T, Young C D, Colombo L, Summerfelt S R, San T and Kim J 2018 Appl. Phys. Lett. 112 172902 [16] Onaya T, Nabatame T, Sawamoto N, Ohi A, Ikeda N, Nagata T and Ogura A 2019 Microelectron. Eng. 215 111013 [17] Li Y X, Liang R R, Wang J B, Zhang Y, Tian H, Liu H F, Li S L, Mao W Q, Pang Y, Li Y T, Yang Y and Ren T L 2017 IEEE J. Electron. Devices. Soc. 5 378 [18] Kim S J, Narayan D, Lee J, Mohan J, Lee J S, Lee J, Kim H S, Byun Y C, Lucero A T, Young C D, Summerfelt S R, San T, Colombo L and Kim J 2017 Appl. Phys. Lett. 111 242901 [19] Gaddam V, Das D, Jung T and Jeon S 2021 IEEE Electron. Device Lett. 42 812 [20] Persson A E O, Athle R, Littow P, Persson K M, Svensson J, Borg M and Wernersson L E 2020 Appl. Phys. Lett. 116 062902 [21] Toprasertpong K, Tahara K, Fukui T, Lin Z Y, Watanabe K, Takenaka M and Takagi S 2020 IEEE Electron. Device Lett. 41 1588 [22] Goh Y, Hwang J, Lee Y, Kim M and Jeon S 2020 Appl. Phys. Lett. 117 242901 [23] Wang D, Zhang Y, Wang J L, Luo C L, Li M, Shuai W T, Tao R Q, Fan Z, Chen D Y, Zeng M, Dai J Y, Lu X B and Liu J M 2022 J. Mater. Sci. Technol. 104 1 [24] Kashir A, Kim H, Oh S and Hwang H 2021 ACS. Appl. Electron. Mater. 3 629 [25] Shiraishi T, Katayama K, Yokouchi T, Shimizuc T, Oikawa T, Sakata O, Uchida H, Imaie Y, Kiguchi T, Konno T J and Funakubo H 2017 Mater. Sci. Semicond. Proc. 70 239 [26] Kashir A, Kim H, Oh S and Hwang H 2021 ACS Appl. Electron. Mater. 3 629 [27] Kim H, Kashir A, Oh S and Hwang H 2021 Nanotechnology 32 055703 [28] Park M H, Lee Y H, Mikolajick T, Schroeder U and Hwang C S 2019 Adv. Electron. Mater. 5 1800522 [29] Oh S, Kim H, Kashir A and Hwang H 2020 Appl. Phys. Lett. 117 252906 [30] Chernikova A G, Kuzmichev D S, Negrov D V, Kozodaev M G, Polyakov S N and Markeev A M 2016 Appl. Phys. Lett. 108 242905 [31] Mueller S, Muller J, Schroeder U and Mikolajick T 2013 IEEE Trans. Device. Mater. Reliab. 13 93 [32] Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U and Mikolajick T 2012 Adv. Funct. Mater. 22 2412 [33] Yau H M, Chen X X, Wong C M, Chen D Y and Dai J Y 2021 Mater. Charact. 176 111114 [34] Wang J J, Zhou D Y, Dong W, Yao Y F, Sun N, Ali F Z, Hou X D and Liu F 2021 Adv. Electron. Mater. 7 2000585 [35] Yang C, Fan H Q, Qiu S J, Xi Y X and Fu Y F 2009 J. Non-Cryst. Solids. 355 33 [36] Onaya T, Nabatame T, Sawada T, Kurishima K, Sawamoto N, Ohi A, Chikyow T and Ogura A 2016 ECS Trans. 75 667 [37] Onaya T, Nabatame T, Sawada T, Kurishima K and Sawamoto N 2018 Thin. Solid. Films. 655 48 [38] Martin D, Grube M, Weinreich W, Müller J, Weber W M, Schröder U, Riechert H and Mikolajick T 2013 J. Appl. Phys. 113 194103 [39] Niinistö J, Kukli K, Heikkilä M, Ritala M and Leskelä M 2019 Adv. Eng. Mater. 11 223 [40] Zheng Q S, Liu Y C, Li M, Liu Z G, Hu Y H, Zhang X W, Deng W and Wang M T 2020 J. Eur. Ceram. Soc. 40 463 [41] Chen K T, Chen H Y, Liao C Y, Siang G Y, Lo C, Liao M H, Li K S, Chang S T and Lee M H 2019 IEEE Electron. Device Lett. 40 399 [42] Hamouda W, Lubin C, Ueda S, Yamashita Y, Renault O, Mehmood F, Mikolajick T, Schroeder U, Negrea R and Barrett N 2020 Appl. Phys. Lett. 116 252903 [43] Hamouda W, Pancotti A, Lubin C, Tortech L, Richter C, Mikolajick T, Schroeder U and Barrett N 2020 J. Appl. Phys. 127 064105 [44] Materano M, Lomenzo P D, Kersch A, Park M H, Mikolajick T and Schroeder U 2021 Inorg. Chem. Front. 8 2650 [45] Grimley E D, Schenk T, Sang X H, Pešić M, Schroeder U, Mikolajick T and LeBeau J M 2016 Adv. Electron. Mater. 2 1600173 [46] Li S D, Zhou D Y, Shi Z X, Hoffmann M, Mikolajick T and Schroeder U 2020 Adv. Electron. Mater. 6 2000264 [47] Ryu H, Xu Kai, Kim J H, Kang S, Guo J and Zhu W J 2019 IEEE Trans. Electron Devices 66 2359 [48] Pesic M, Fengler F P G, Larcher L, Padovani A, Schenk T, Grimley E D, Sang X, LeBeau J M, Slesazeck S, Schroeder U and Mikolajick T 2016 Adv. Funct. Mater. 26 4601 [49] Grimley D, Schenk T, Sang X, Pesic M, Schroeder U, Mikolajick T and LeBeau J M 2016 Adv. Electron. Mater. 2 1600173 [50] Kozodaev M G, Chernikova A G, Korostylev E V, Park M H, Khakimov R R, Hwang C S and Markeev A M 2019 J. Appl. Phys. 125 034101 [51] Mittmann T, Materano M, Lomenzo P D, Park M H, Stolichnov I, Cavalieri M, Zhou Z C, Chung C C, Jones J L, Szyjka T, Müller M, Kersch A, Mikolajick T and Schroeder U 2019 Adv. Mater. Interfaces 6 1900042 [52] Park M H, Kim H J, Kim Y J, Jeon W, Moon T and Hwang C S 2014 Phys. Status Solidi RRL 8 532 [53] Chernikova A G, Kozodaev M G, Negrov D V, Korostylev E V, Park M H, Schroeder U, Hwang C S and Markeev A M 2018 ACS Appl. Mater. Interfaces 10 2701 [54] Cao R R, Song B, Shang D S, Yang Y, Luo Q, Wu S Y, Li Y, Wang Y, Lv H B, Liu Q and Liu M 2019 IEEE Electron Device Lett. 40 1744 [55] Mulaosmanovic H, Breyer T E, Dünkel S, Beyer S, Mikolajick T and Slesazeck S 2021 Nanotechnology 32 502002 [56] Peng Y, Xiao W W, Liu Y, Jin C J, Deng X R, Zhang Y Y, Liu F N, Zheng Y Z, Cheng Y, Chen B, Yu X, Hao Y and Han G Q 2022 IEEE Electron Device Lett. 43 216 [57] Mehmood F, Hoffmann M, Lomenzo P D, Richter C, Materano M, Mikolajick T and Schroeder U 2019 Adv. Mater. Interfaces 6 1901180 [58] Gong N and Ma T P 2016 IEEE Electron. Device Lett. 37 1123 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|