Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040703    DOI: 10.1088/1674-1056/aca6d5
GENERAL Prev   Next  

A robust method for performance evaluation of the vapor cell for magnetometry

Zhi Liu(柳治)1,2, Sheng Zou(邹升)1,2, Kaifeng Yin(尹凯峰)1,2, Tao Shi(石韬)1,2, Junjian Tang(唐钧剑)1,2, and Heng Yuan(袁珩)1,2,†
1 School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China;
2 Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
Abstract  A robust performance evaluation method for vapor cells used in magnetometers is proposed in this work. The performance of the vapor cell determines the sensitivity of the magnetic measurement, which is the core parameter of a magnetometer. After establishing the relationship between intrinsic sensitivity and the total relaxation rate, the total relaxation rate of the vapor cell can be obtained to represent the intrinsic sensitivity of the magnetometer by fitting the parameters of the magnetic resonance experiments. The method for measurement of the total relaxation rate based on the magnetic resonance experiment proposed in this work is robust and insensitive to ambient noise. Experiments show that, compared with conventional sensitivity measurement, the total relaxation rate affected by magnetic noise below 0.9 nT, pump light frequency noise below 1.5 GHz, pump light power noise below 9%, probe light power noise below 3% and temperature fluctuation of 150 ±3 ℃ deviates by less than 2% from the noise-free situation. This robust performance evaluation method for vapor cells is conducive to the construction of a multi-channel high-spatial-resolution cardio-encephalography system.
Keywords:  evaluation method      magnetometer      robust      vapor cell  
Received:  06 September 2022      Revised:  14 November 2022      Accepted manuscript online:  29 November 2022
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  07.55.-w (Magnetic instruments and components)  
  33.35.+r (Electron resonance and relaxation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62173020 and 62103381).
Corresponding Authors:  Heng Yuan     E-mail:  hengyuan@buaa.edu.cn

Cite this article: 

Zhi Liu(柳治), Sheng Zou(邹升), Kaifeng Yin(尹凯峰), Tao Shi(石韬),Junjian Tang(唐钧剑), and Heng Yuan(袁珩) A robust method for performance evaluation of the vapor cell for magnetometry 2023 Chin. Phys. B 32 040703

[1] Fan L M, Zheng Q, Kang X Y, Zhang X J and Kang C 2018 Chin. Phys. B 27 060703
[2] Chen D, Zhao B Q and Zhang X 2015 Chin. Phys. Lett. 32 128502
[3] Zhang S L and Cao N 2020 Chin. Phys. B 29 040702
[4] Li J J, Du P C, Fu J Q, Wang X T, Zhou Q and Wang R Q 2019 Chin. Phys. B 28 040703
[5] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[6] Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
[7] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Munoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R and Brookes M J 2018 Nature 555 657
[8] Chi H T, Quan W, Zhang J Y, Zhao L J and Fang J C 2020 Appl. Surf. Sci. 501 143897
[9] Wang X L, Ye M, Lu F, Mao Y K, Tian H and Li J L 2022 Biosensors 12 165
[10] Kitching J 2018 Appl. Phys. Rev. 5 031302
[11] Ji Y, Shang J T, Li G L, Zhang J and Zhang J F 2020 IEEE Sens. Lett. 4 2500104
[12] Liu Z, Zou S, Yin K F, Zhou B Q, Ning X L and Yuan H 2022 J. Phys. D: Appl. Phys. 55 285003
[13] Patton B, Ishikawa K, Jau Y Y and Happer W 2007 Phys. Rev. Lett. 99 027601
[14] Perry A R, Sheng D, Krzyzewski S P, Geller S and Knappe S 2017 Proc. SPIE 10119, Slow Light, Fast Light, and Opto-Atomic Precision Metrology X, 101190V
[15] Wang Y X, Jin G, Tang J J, Zhou W Y, Han B C, Zhou B Q and Shi T 2022 Opt. Express 30 336
[16] Wang Y X, Shi T, Zhou W Y, Tang J J, Zhou B Q, Jin G, Han B C and Zou S 2022 Opt. Express 30 23587
[17] Sun Z Y, Fierlinger P, Han J C, Li L Y, Liu T H, Schnabel A, Stuiber S and Voigt J 2021 IEEE Trans. Ind. Electron. 68 5385
[18] Xing B Z, Lu J X, Sun C, Yu T T, Wu Y, Gao Y N and Han B C 2022 Opt. Express 30 3854
[19] Jia Y C, Liu Z C, Chai Z, Liang X Y and Wu W F 2021 IEEE Trans. Instrum. Meas. 70 7005409
[20] Yan Y G, Liu G, Lin H X, Yin K F, Wang K and Lu J X 2021 Chin. Opt. Lett. 19 121407
[21] Zhao T, Liu Y, Wei K, Xie H T, Mu T J, Fang X J, Xu Z T and Zhai Y Y 2022 J. Phys. D: Appl. Phys. 55 165103
[22] Liu F, Wu J Q and Quan W 2022 Rev. Sci. Instrum. 93 015102
[23] Lu F, Lu J X, Li B, Yan Y G, Zhang S W, Yin K F, Ye M and Han B C 2022 IEEE Trans. Instrum. Meas. 71 1501210
[24] Zou S, Zhang H, Chen X Y and Fang J C 2022 Measurement 187 110338
[25] Kamada K, Ito Y, Ichihara S, Mizutani N and Kobayashi T 2015 Opt. Express 23 6976
[26] Lu J X, Qian Z, Fang J C and Quan W 2015 Rev. Sci. Instrum. 86 083103
[27] Fang J C and Qin J 2012 Rev. Sci. Instrum. 83 103104
[28] Ji A C, Xie X C, Liu W M 2007 Phys. Rev. Lett. 99 183602
[29] Tang J J, Liu Y, Wang Y X, Zhou B Q, Han B C, Zhai Y Y and Liu G 2022 Appl. Phys. Lett. 120 084001
[30] Liu X J, Ding M, Li Y, Hu Y H, Jin W and Fang J C 2018 Chin. Phys. B 27 073201
[31] Savukov I M and Romalis M V 2005 Phys. Rev. A 71 023405
[32] Lu J X, Qian Z and Fang J C 2015 Rev. Sci. Instrum. 86 043104
[33] Romalis M V, Miron E and Cates G D 1997 Phys. Rev. A 56 4569
[34] Rotondaro M D and Perram G P 1997 J. Quant. Spectrosc. Radiat. Transfer 57 497
[1] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[2] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋),Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[3] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[4] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[5] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[6] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[7] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[8] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[9] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[10] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[11] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[14] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[15] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
No Suggested Reading articles found!