|
|
A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography |
Qing-Qian Guo(郭清乾)1,2,3, Tao Hu(胡涛)1,3,†, Xiao-Yu Feng(冯晓宇)3, Ming-Kang Zhang(张明康)4, Chun-Qiao Chen(陈春巧)4, Xin Zhang(张欣)1,2,3, Ze-Kun Yao(姚泽坤)4, Jia-Yu Xu(徐佳玉)4, Qing Wang(王青)1,2,3, Fang-Yue Fu(付方跃)4, Yin Zhang(张寅)1,3, Yan Chang(常严)1,3, and Xiao-Dong Yang(杨晓冬)3,1,‡ |
1 Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; 2 School of Biomedical Engineering(Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; 3 Jihua Laboratory, Foshan 528000, China; 4 School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China |
|
|
Abstract Atomic magnetometers operated in the spin-exchange relaxation-free (SERF) regime are the promising sensor to replace superconducting quantum interference devices (SQUIDs) in the biomagnetism field. The SERF magnetometer with compact size and good performance is crucial to the new generation of wearable magnetoencephalography (MEG) system. In this paper, we developed a compact and closed-loop SERF magnetometer with the dimensions of 15.0×22.0×30.0 mm3 based on a single-beam configuration. The bandwidth of the magnetometer was extended to 675 Hz while the sensitivity was maintained at 22 fT/Hz1/2. A nearly 3-fold enhancement of the bandwidth was obtained in comparison with the open-loop control. The implementation of the closed-loop control also greatly improved the dynamic range, enabling the magnetometer to be robust against the disturbance of the ambient field. Moreover, the magnetometer was successfully applied for the detection of human α -rhythm and auditory evoked fields (AEFs), which demonstrated the potential to be extended to multi-channel MEG measurements for future neuroscience studies.
|
Received: 03 May 2022
Revised: 24 June 2022
Accepted manuscript online: 05 July 2022
|
PACS:
|
07.55.Ge
|
(Magnetometers for magnetic field measurements)
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
87.85.-d
|
(Biomedical engineering)
|
|
87.85.Pq
|
(Biomedical imaging)
|
|
Fund: Project supported by Ji Hua Laboratory (Grant No. X190131TD190), the Research and Development Project for Equipment of Chinese Academy of Sciences (Grant No. YJKYYQ20210051), the Suzhou pilot project of basic research (Grant No. SJC2021024), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200215). |
Corresponding Authors:
Tao Hu, Xiao-Dong Yang
E-mail: hutao@sibet.ac.cn;xiaodong.yang@sibet.ac.cn
|
Cite this article:
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬) A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography 2023 Chin. Phys. B 32 040702
|
[1] Cohen D 1972 Science 175 664 [2] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Munoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R and Brookes M J 2018 Nature 555 657 [3] Hämäläinen M, Hari R, Ilmoniemi R J, Knuutila J and Lounasmaa O V 1993 Rev. Mod. Phys. 65 413 [4] Boto E, Meyer S S, Shah V, Alem O, Knappe S, Kruger P, Fromhold T M, Lim M, Glover P M, Morris P G, Bowtell R, Barnes G R and Brookes M J 2017 NeuroImage 149 404 [5] Roberts G, Holmes N, Alexander N, Boto E, Leggett J, Hill R M, Shah V, Rea M, Vaughan R, Maguire E A, Kessler K, Beebe S, Fromhold M, Barnes G R, Bowtell R and Brookes M J 2019 Neuroimage 199 408 [6] Hill R M, Boto E, Holmes N, Hartley C, Seedat Z A, Leggett J, Roberts G, Shah V, Tierney T M, Woolrich M W, Stagg C J, Barnes G R, Bowtell R, Slater R and Brookes M J 2019 Nat. Commun. 10 4785 [7] Boto E, Hill R M, Rhodes N, Osborne J, Doyle C, Holmes N, Rea M, Leggett J, Bowtell R and Brookes M J 2022 NeuroImage 252 119027 [8] Tierney T M, Levy A, Barry D N, Meyer S S, Shigihara Y, Everatt M, Mellor S, Lopez J D, Bestmann S, Holmes N, Roberts G, Hill R M, Boto E, Leggett J, Shah V, Brookes M J, Bowtell R, Maguire E A and Barnes G R 2021 Neuroimage 225 117443 [9] Sheng J, Wan S, Sun Y, Dou R, Guo Y, Wei K, He K, Qin J and Gao J H 2017 Rev. Sci. Instrum. 88 094304 [10] Hill R M, Boto E, Rea M, Holmes N, Leggett J, Coles L A, Papastavrou M, Everton S K, Hunt B A E, Sims D, Osborne J, Shah V, Bowtell R and Brookes M J 2020 Neuroimage 219 116995 [11] Guo Q Q, Hu T, Chen C Q, Feng X Y, Wu Z Y, Zhang Y, Zhang M K, Chang Y and Yang X D 2021 IEEE Sens. J. 21 21425 [12] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801 [13] Ito Y, Ohnishi H, Kamada K and Kobayashi T 2011 IEEE Trans. Magn. 47 3550 [14] Li J D, Quan W, Zhou B Q, Wang Z, Lu J X, Hu Z H, Liu G and Fang J C 2018 IEEE Sens. J. 18 8198 [15] Mhaskar R, Knappe S and Kitching J 2012 Appl. Phys. Lett. 101 241105 [16] Liu G, Tang J, Yin Y, Wang Y, Zhou B and Han B 2020 IEEE Sens. J. 20 5827 [17] Zhang G, Zeng H, Tan G and Lin Q 2022 IEEE Sens. J. 22 7700 [18] Du P C, Li J J, Yang S J, Wang X T, Zhuo Y, Wang F and Wang R Q 2019 Chin. Phys B 28 040702 [19] Osborne J, Orton J, Alem O and Shah V 2018 Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI, 22 February, 2018, California, United States, p. 105481G [20] Barry D N, Tierney T M, Holmes N, Boto E, Roberts G, Leggett J, Bowtell R, Brookes M J, Barnes G R and Maguire E A 2019 Neuroimage 203 116192 [21] Tierney T M, Holmes N, Meyer S S, Boto E, Roberts G, Leggett J, Buck S, Duque-Munoz L, Litvak V, Bestmann S, Baldeweg T, Bowtell R, Brookes M J and Barnes G R 2018 Neuroimage 181 513 [22] Zhang X, Chen C Q, Zhang M K, Ma C Y, Zhang Y, Wang H, Guo Q Q, Hu T, Liu Z B, Chang Y, Hu K J and Yang X D 2020 J Neurosci Methods 346 108948 [23] Baillet S 2017 Nat. Neurosci. 20 327 [24] T Fedele H J S, M Burghoff, G Curio and R Körber 2015 Physiol. Meas. 36 357 [25] Lopes da Silva F 2013 Neuron 80 1112 [26] Holmes N, Leggett J, Boto E, Roberts G, Hill R M, Tierney T M, Shah V, Barnes G R, Brookes M J and Bowtell R 2018 Neuroimage 181 760 [27] Ledbetter M P, Savukov I M, Acosta V M, Budker D and Romalis M V 2008 Phys. Rev. A 77 033408 [28] Tang J, Yin Y, Zhai Y, Zhou B, Han B, Yang H and Liu G 2021 Opt. Express 29 8333 [29] Cohen-Tannoudji C, Dupont-Roc J, Haroche S and Lalo€ E F 1970 Rev. Phys. Appl. 5 95 [30] Tierney T M, Holmes N, Mellor S, Lopez J D, Roberts G, Hill R M, Boto E, Leggett J, Shah V, Brookes M J, Bowtell R and Barnes G R 2019 NeuroImage 199 598 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|