Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 110703    DOI: 10.1088/1674-1056/ac6010
GENERAL Prev   Next  

Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer

Kai-Feng Yin(尹凯峰)1, Ji-Xi Lu(陆吉玺)2,3,†, Fei Lu(逯斐)1,2, Bo Li(李博)3, Bin-Quan Zhou(周斌权)2, and Mao Ye(叶茂)2,3,‡
1 School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China;
2 Research Institute for Frontier Science, Beihang University, Beijing 100191, China;
3 Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Hangzhou 310023, China
Abstract  Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently. In this study, we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction. The proposed modification method gives improvement in dynamic range and reduction of linearity error. Additionally, our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations. An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method. The results indicate that our method's magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT, with the linearity error decreased from 5% to 1%. Under the fluctuations of 5% for optical intensity and ±15 GHz detuning of frequency, the proposed modification method maintains intensity-related instability less than 1% and frequency-related instability less than 8% while the conventional method suffers 15% and 38%, respectively. Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.
Keywords:  atomic magnetometer      dynamic range      linearity error      response signal stability  
Received:  26 December 2021      Revised:  22 March 2022      Accepted manuscript online:  23 March 2022
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  06.20.fb (Standards and calibration)  
  32.30.Dx (Magnetic resonance spectra)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFB2002405) and the National Natural Science Foundation of China (Grant No. 61903013).
Corresponding Authors:  Ji-Xi Lu, Mao Ye     E-mail:  lujixi@buaa.edu.cn;maoye@buaa.edu.cn

Cite this article: 

Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂) Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer 2022 Chin. Phys. B 31 110703

[1] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[2] Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
[3] Brookes M J, Boto E, Rea M, Shah V, Osborne J, Holmes N, Hill R M, Leggett J, Rhodes N and Bowtell R 2021 NeuroImage 236 118025
[4] Abel C, Afach S, Ayres N J, et al. 2020 Phys. Rev. Lett. 124 081803
[5] Romalis M V and Dang H B 2011 Mater. Today 14 258
[6] Du P C, Li J J, Yang S J, Wang X T, Zhuo Y, Wang F and Wang R Q 2019 Chin. Phys. B 28 040702
[7] Knappe S, Sander T H, Kosch O, Wiekhorst F, Kitching J and Trahms L 2010 Appl. Phys. Lett. 97 133703
[8] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Mu noz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R and Brookes M J 2018 Nature 555 657
[9] Fu J Q, Du P C, Zhou Q and Wang R Q 2016 Chin. Phys. B 25 010302
[10] Qiu X Y, Xu Z Y, Peng X X, Li L H, Zhou Y M, Wei M M, Zhou M and Xu X Y 2020 Appl. Phys. Lett. 116 034001
[11] Zhang J H, Liu Q, Zeng X J, Li J X and S W M 2012 Chin. Phys. Lett. 29 068501
[12] Karaulanov T, Savukov I and Kim Y J 2016 Meas. Sci. Technol. 27 055002
[13] Shah V and Romalis M V 2009 Phys. Rev. A 80 013416
[14] Zheng W Q, Su S R, Zhang G Y, Bi X and Lin Q 2020 Biomed. Opt. Express 11 649
[15] Savukov I, Kim Y J, Shah V and Boshier M G 2017 Meas. Sci. Technol. 28 035104
[16] Liu G, Tang J J, Yin Y, Wang Y X, Zhou B Q and Han B C 2020 IEEE Sens. J. 20 5827
[17] Fang X J, Wei K, Zhao T, Zhai Y Y, Ma D Y, Xing B Z, Liu Y and Xiao Z S 2020 Opt. Express 28 26447
[18] Colombo A P, Carter T R, Borna A, Jau Y Y, Johnson C N, Dagel A L and Schwindt P D D 2016 Opt. Express 24 15403
[19] Sulai I A, DeLand Z J, Bulatowicz M D, Wahl C P, Wakai R T and Walker T G 2019 Rev. Sci. Instrum. 90 085003
[20] Sheng D, Perry A R, Krzyzewski S P, Geller S, Kitching J and Knappe S 2017 Appl. Phys. Lett. 110 031106
[21] Sander T H, Preusser J, Mhaskar R, Kitching J, Trahms L and Knappe S 2012 Biomed. Opt. Express 3 981
[22] Iivanainen J, Zetter R, Gr?n M, Hakkarainen K and Parkkonen L 2019 NeuroImage 194 244
[23] Wang J, Fan W F, Yin K F, Yan Y G, Zhou B Q and Song X D 2020 Phys. Rev. A 101 053427
[24] Li Z M, Wakai R T and Walker T G 2006 Appl. Phys. Lett. 89 134105
[25] Boto E, Meyer S S, Shah V, Alem O, Knappe S, Kruger P, Fromhold T M, Lim M, Glover P M, Morris P G, Bowtell R, Barnes G R and Brookes M J 2017 NeuroImage 149 404
[26] Rea M, Holmes N, Hill R M, Boto E, Leggett J, Edwards L J, Woolger D, Dawson E, Shah V, Osborne J, Bowtell R and Brookes M J 2021 NeuroImage 241 118401
[27] Nardelli N V, Perry A R, Krzyzewski S P and Knappe S 2020 EPJ Quantum Technol. 7 11
[28] Breschi E and Weis A 2012 Phys. Rev. A 86 053427
[29] Castagna N and Weis A 2011 Phys. Rev. A 84 053421
[30] Seltzer, S J 2008 Developments in Alkali-Metal Atomic Magnetometry, Ph. D. Dissertation (New Jersey: Princeton University)
[31] Alcock C B, Itkin V P and Horrigan M K 1984 Can. Metall. Q. 23 309
[32] Shah V and Romalis M V 2009 Phys. Rev. A 80 013416
[33] Savukov I M and Romalis M V 2005 Phys. Rev. A 71 023405
[34] Regtien P and Dertien E 2018 Sensors for Mechatronics, 2nd edn. (Amsterdam: Elsevier) pp.40-41
[35] Ma D Y, Lu J X, Fang X J, Yang K, Wang K, Zhang N, Han B C and Ding M 2022 IEEE Trans. Ind. Electron. 69 991
[1] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[2] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[3] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[4] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[5] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[6] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[7] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[8] Recent research process on perovskite photodetectors:A review for photodetector – materials, physics, and applications
Yan Zhao(赵岩), Chenglong Li(李成龙), Liang Shen(沈亮). Chin. Phys. B, 2018, 27(12): 127806.
[9] Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄). Chin. Phys. B, 2017, 26(6): 067801.
[10] Spin dynamics of magnetic resonance with parametric modulation in a potassium vapor cell
Rui Zhang(张锐), Zhi-Guo Wang(汪之国), Xiang Peng(彭翔), Wen-Hao Li(黎文浩), Song-Jian Li(李松健), Hong Guo(郭弘). Chin. Phys. B, 2017, 26(3): 030701.
[11] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
[12] Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime
Ji-Qing Fu(伏吉庆), Peng-Cheng Du(杜鹏程), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2016, 25(1): 010302.
[13] In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
Fang Jian-Cheng (房建成), Wang Tao (王涛), Zhang Hong (张红), Li Yang (李阳), Cai Hong-Wei (蔡洪炜). Chin. Phys. B, 2015, 24(6): 060702.
[14] Measurement of 129Xe frequency shift due to Cs-129Xe collisions
Fang Jian-Cheng (房建成), Wan Shuang-Ai (万双爱), Chen Yao (陈瑶). Chin. Phys. B, 2014, 23(6): 063401.
[15] High contrast atomic magnetometer based on coherent population trapping
Yang Ai-Lin (杨爱林), Yang Guo-Qing (杨国卿), Xu Yun-Fei (徐云飞), Lin Qiang (林强). Chin. Phys. B, 2014, 23(2): 027601.
No Suggested Reading articles found!