Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 024202    DOI: 10.1088/1674-1056/ac9b34

Research on the model of high robustness computational optical imaging system

Yun Su(苏云)1,2, Teli Xi(席特立)1, and Xiaopeng Shao(邵晓鹏)1,†
1 School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 Beijing Institute of Space Mechanics&Electricity, Beijing 100094, China
Abstract  Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.
Keywords:  computational optical imaging      high robustness      sensitivity  
Received:  19 June 2022      Revised:  22 September 2022      Accepted manuscript online:  19 October 2022
PACS:  42.15.Eq (Optical system design)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
  42.30.Kq (Fourier optics)  
Corresponding Authors:  Xiaopeng Shao     E-mail:

Cite this article: 

Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏) Research on the model of high robustness computational optical imaging system 2023 Chin. Phys. B 32 024202

[1] Dong D Y, Li Z L, Xue D L, Chen C Z and Zhang X J 2016 Opt. Precis. Eng. 24 10
[2] Pang S W, Pan T, Mao Y L, Li X Y, Zhang M, Liu H Y, Wang Z Y and Zhu W H 2016 Spacer. Environ. Eng. 33 305
[3] Li L, Wang D, Yang H B, Tan L Y and Sun Z L 2016 Opt. Precis. Eng. 24 1677
[4] John M T 2010 A study of image artifacts caused by structured mid-spatial frequency fabrication errors on optical surfaces, Ph.D. dissertation (Tucson: The University of Arizona)
[5] Zhang Y J, Tang Y, Wang P, Li Y C, Zhu D L, Sun H, Chai L F and Chen B Y 2011 Opto-Electron. Eng. 38 127
[6] Šiljak D D 1980 Int. J. Control. 31 303
[7] Guan Y 2006 Research on Satellite Attitude Control System based on Robust Fault-tolerant Control, MS dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[8] Perry J W 1943 Proc. Phys. Soc. 55 257
[9] Gray D S 1948 J. Opt. Soc. Am. 38 542
[10] Johnston J D, Howard J M, Mosier G E, Parrish K A, McGinnis M A, Bluth A M, Kim K and Ha K Q 2004 Optical, Infrared, and Millimeter Space Telescopes (USA: SPIE-Int) p. 600
[11] Liu G 2019 Research of the key technologies on active-thermal optics for the space camera based on structural-thermal-optical integration, Ph.D. dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[12] Cho M K and Poczulp G A 1991 Proc. SPIE-Int. Soc. Opt. Eng. 1532 137
[13] Forman S E and Sultana J A 1990 Advances in Optical Structure Systems (USA: SPIE-Int) p. 65
[14] Gureyev T E, Roberts A and Nugent K A 1995 J. Opt. Soc. Am. A 12 1932
[15] Prata A and Rusch W V T 1989 Appl. Opt. 28 749
[16] Fisher R A 1983 Opt. Lett. 8 611
[17] Huang W W, Zhao T Y, Zhang W Z and Yu F H 2007 Opt. Instrum. 29 17
[18] Feng L T, Meng J H, Dun X and Tao Y 2011 Infrared Laser Eng. 40 83
[19] Chen S Q, Fan Z G, Xu Z G, Zuo B J, Wang S and Xiao H S 2011 Opt. Lett. 36 3021
[20] Gonzalo M, Amritpal S, Mathias A, David H, Andrew W and Andrew R H 2009 Opt. Express 17 21118
[1] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[2] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[3] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[4] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[5] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[6] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[7] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[8] Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA
Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明). Chin. Phys. B, 2021, 30(10): 108702.
[9] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[10] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[11] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[12] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[13] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[14] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[15] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
No Suggested Reading articles found!