Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080201    DOI: 10.1088/1674-1056/ac6942
GENERAL Prev   Next  

Robustness measurement of scale-free networks based on motif entropy

Yun-Yun Yang(杨云云)1,†, Biao Feng(冯彪)1, Liao Zhang(张辽)1, Shu-Hong Xue(薛舒红)1, Xin-Lin Xie(谢新林)2, and Jian-Rong Wang(王建荣)3
1 College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2 Taiyuan University of Science and Technology, Taiyuan 030024, China;
3 School of Mathematical Sciences, Shanxi University, Taiyuan 030024, China
Abstract  As a classical complex network model, scale-free network is widely used and studied. And motifs, as a high-order subgraph structure, frequently appear in scale-free networks, and have a great influence on the structural integrity, functional integrity and dynamics of the networks. In order to overcome the shortcomings in the existing work on the robustness of complex networks, only nodes or edges are considered, while the defects of high-order structure in the network are ignored. From the perspective of network motif, we propose an entropy of node degree distribution based on motif to measure the robustness of scale-free networks under random attacks. The effectiveness and superiority of our method are verified and analyzed in the BA scale-free networks.
Keywords:  motif      network robustness      scale-free      entropy  
Received:  27 February 2022      Revised:  18 April 2022      Accepted manuscript online:  22 April 2022
PACS:  02.30.-f (Function theory, analysis)  
  02.30.Yy (Control theory)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.65.+b (Self-organized systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62006169), the Youth Natural Science Foundation of Shanxi Province, China (Grant No. 201901D211304), the China Postdoctoral Science Foundation (Grant No. 2021M692400), and the Science and Technology Innovation Projects of Universities in Shanxi Province, China (Grant No. 2020L0021).
Corresponding Authors:  Yun-Yun Yang     E-mail:

Cite this article: 

Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣) Robustness measurement of scale-free networks based on motif entropy 2022 Chin. Phys. B 31 080201

[1] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep.-Rev. Sec. Phys. Lett. 424 175
[2] Albert R, Jeong H and Barabási A L 2000 Nature 406 378
[3] Newman M and Ghoshal G 2008 Phys. Rev. Lett. 100 138701
[4] Clemente G P and Cornaro A 2020 Soft Comput. 24 13687
[5] Wang X R, Pournaras E, Kooij R E and Van Mieghem P 2014 Eur. Phys. J. B 87 221
[6] Ellens W, Spieksma F M, Van Mieghem P, Jamakovic A and Kooij R E 2011 Linear Alg. Appl. 435 2491
[7] He Z W, Liu S and Zhan M 2013 Physica A 392 4181
[8] Kasthurirathna D, Piraveenan M and Thedchanamoorthy G 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), April 16-19, 2013, Singapore, Singapore, p. 122
[9] Zhou A, Maletic S and Zhao Y 2018 Physica A 502 459
[10] Liu D, Tse C K and Zhang X 2019 IEEE Trans. Circuits Syst. II-Express Briefs 66 833
[11] Zhang X and Ise C K 2015 IEEE International Symposium on Circuits and Systems (ISCAS), May 24-27, 2015, Lisbon, Portugal, p. 2684
[12] Yang H H and An S 2021 Alex. Eng. J. 60 2065
[13] Manzano M, Calle E, Torres-Padrosa V, Segovia J and Harle D 2014 Comput. Netw. 57 3641
[14] Zou Z Y, Xiao Y and Gao J Z 2013 Kybernetes 42 383
[15] Yang Y H, Liu, Y X, Zhou M X, Li F X and Sun C 2015 Saf. Sci. 79 149
[16] Zhou X, Zhang F M, Zhou W P, Zou W and Yang F 2012 Acta Phys. Sin. 61 190201 (in Chinese)
[17] Hong C, He N, Lordan O, Liang B Y and Yin N Y 2017 Physica A 478 63
[18] Wu Y P, Chen Z L, Yao K, Zhao X D and Chen Y C 2019 Fractals-Complex Geom. Patterns Scaling Nat. Soc. 27
[19] Wu J, Barahona M, Tan Y J and Deng H Z 2006 IEEE Trans. Syst. Man Cybern. Paart A-Syst. Hum. 41 1244
[20] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D and Alon U 2002 Science 298 824
[21] Onnela J P, Saramaki J, Kertesz J and Kaski K 2005 Phys. Rev. E 71 065103
[22] Barabási A L and Bonabeau E 2003 Sci. Am. 288 60
[23] Barabási A L and Albert R 1999 Science 286 509
[24] Wernicke S and Rasche F 2006 Bioinformatics 22 1152
[25] Wernicke S 2006 5th International Workshop on Algorithms in Bioinformatics (WABI 2005), October 3-6, 2005, Mallorca, Spain, p. 347
[26] Han H, Liu W L and Wu L Y 2013 Acta Phys. Sin. 62 168904 (in Chinese)
[27] Borgatti S P 2003 International Conference on Integration of Knowledge Intenzive Multi-Agent Systems, September 30-October 4, 2003, Cambridge, Ma, p. 127
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[5] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[6] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[7] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[8] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
[9] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
[10] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[11] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[12] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[13] Information flow between stock markets: A Koopman decomposition approach
Semba Sherehe, Huiyun Wan(万慧云), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2022, 31(1): 018902.
[14] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[15] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
No Suggested Reading articles found!