|
|
A simple semiempirical model for the static polarizability of electronically excited atoms and molecules |
Alexander S Sharipov†, Alexey V Pelevkin, and Boris I Loukhovitski |
Central Institute of Aviation Motors, Aviamotornaya 2, Moscow 111116, Russia |
|
|
Abstract We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules, which requires very few readily accessible input data, including the ground-state polarizability, elemental composition, ionization potential, and spin multiplicities of excited and ground states. This very simple model formulated in a semiclassical framework is based on a number of observed trends in polarizability of electronically excited compounds. To adjust the model, both accurate theoretical predictions and reliable measurements previously reported elsewhere for a broad range of multielectron species in the gas phase are utilized. For some representative compounds of general concern that have not yet attracted sufficient research interest, the results of our multireference second-order perturbation theory calculations are additionally engaged. We show that the model we developed has reasonable (given the considerable uncertainties in the reference data) accuracy in predicting the static polarizability of electronically excited species of arbitrary size and excitation energy. These findings can be useful for many applications, where there is a need for inexpensive and quick assessments of the static gas-phase polarizability of excited electronic states, in particular, when building the complex nonequilibrium kinetic models to describe the observed optical refractivity (dielectric permittivity) of nonthermal reacting gas flows.
|
Received: 26 May 2022
Revised: 08 July 2022
Accepted manuscript online: 22 July 2022
|
PACS:
|
33.15.Kr
|
(Electric and magnetic moments (and derivatives), polarizability, and magnetic susceptibility)
|
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
31.15.vj
|
(Electron correlation calculations for atoms and ions: excited states)
|
|
51.70.+f
|
(Optical and dielectric properties)
|
|
Fund: The work is supported by the grant of the Russian Science Foundation (project No. 22-29-00124). |
Corresponding Authors:
Alexander S Sharipov
E-mail: aleksandr.sharipov@phystech.edu,assharipov@ciam.ru
|
Cite this article:
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski A simple semiempirical model for the static polarizability of electronically excited atoms and molecules 2023 Chin. Phys. B 32 043301
|
[1] Buckingham A D and Long D A 1979 Phil. Trans. R. Soc. Lond. A 293 239 [2] Bonin K D and Kresin V V 1997 Electric-Dipole Polarizabilities of Atoms, Molecules, and Clusters (World Scientific, Singapore) [3] Hohm U 2000 Vacuum 58 117 [4] Maroulis G 2012 Struct. Bond. 149 95 [5] Hohm U and Thakkar A J 2012 J. Phys. Chem. A 116 697 [6] Hickey A L and Rowley C N 2014 J. Phys. Chem. A 118 3678 [7] Sabirov D S 2014 RSC Adv. 4 44996 [8] Wu T, Kalugina Y N and Thakkar A J 2015 Chem. Phys. Lett. 635 257 [9] Xie C, Oganov A R, Dong D, Liu N, Li D and Debela T T 2015 Sci. Rep. 5 16769 [10] Loukhovitski B I, Sharipov A S and Starik A M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 125102 [11] Hermann J, DiStasio Jr R A and Tkatchenko A 2017 Chem. Rev. 117 4714 [12] Cherepanov V N, Kalugina Y N and Buldakov M A 2017 Interaction-induced Electric Properties of van der Waals Complexes SpringerBriefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters (Ed. G. Maroulis) (Springer International Publishing) [13] Sharipov A S, Loukhovitski B I and Starik A M 2017 J. Phys. B: At. Mol. Opt. Phys. 50 165101 [14] Schmitt M and Meerts L 2018 Frontiers and Advances in Molecular Spectroscopy (Elsevier) Chap 5, pp. 143-193 [15] Tang Z M, Yu Y M and Dong C Z 2018 Chin. Phys. B 27 063101 [16] Sharipov A S, Loukhovitski B I, Pelevkin A V, Kobtsev V D and Kozlov D N 2019 J. Phys. B: At. Mol. Opt. Phys. 52 045101 [17] Zapata J C and McKemmish L K 2020 J. Phys. Chem. A 124 7538 [18] Mei X, Zhou W, Zhong Z and Qiao H 2020 Chin. Phys. B 29 043101 [19] Tkatchenko A, Fedorov D V and Gori M 2021 J. Phys. Chem. Lett. 12 9488 [20] Beizaei N and Sauer S P A 2021 J. Phys. Chem. A 125 3785 [21] Grabarz A M and Ośmialowski B 2021 Molecules 26 7434 [22] Pluta T and Skrzyński G 2021 Adv. Quantum Chem. Vol. 83 (Elsevier) Chap 15, pp. 305-327 [23] Loukhovitski B I and Sharipov A S 2021 J. Phys. Chem. A 125 5117 [24] Sharipov A S, Loukhovitski B I and Loukhovitskaya E E 2022 Influence of Internal Degrees of Freedom on Electric and Related Molecular Properties SpringerBriefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters (Ed. G. Maroulis) (Springer International Publishing) [25] Sabirov D S, Tukhbatullina A A and Shepelevich I S 2022 ACS Earth Space Chem. 6 1 [26] Szabó P, Góger S, Charry J, Karimpour M R, Fedorov D V and Tkatchenko A 2022 Phys. Rev. Lett. 128 070602 [27] Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001 [28] Vo M N, Call M, Kowall C and Johnson J K 2019 Ind. Eng. Chem. Res. 58 19263 [29] Egan P F, Stone J A and Scherschligt J K 2019 J. Vac. Sci. Technol. A 37 031603 [30] Tropina A A, Wu Y, Limbach C M and Miles R B 2019 J. Phys. D: Appl. Phys. 53 105201 [31] Wu Y, Tropina A A, Miles R B and Limbach C M 2020 J. Phys. D: Appl. Phys. 53 485203 [32] Delone N B and Krainov V P 1988 Fundamentals of nonlinear optics of atomic gases (New York: Wiley) [33] Gladkov S M and Koroteev N I 1990 Sov. Phys. Usp. 33 554 [34] Brand K P 1982 IEEE Trans. Electr. Insul. EI-17 451 [35] Volksen W, Miller R D and Dubois G 2010 Chem. Rev. 110 56 [36] Rabie M, Dahl D A, Donald S M A, Reiher M and Franck C M 2013 IEEE Trans Dielectr. Electr. Insul. 20 856 [37] Lodi L and Tennyson J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 133001 [38] Kaplan I G 2006 Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (Hoboken, NJ: Wiley) [39] Gould T and Bucko T 2016 J. Chem. Theory Comput. 12 3603 [40] Sharipov A S, Loukhovitski B I and Starik A M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 125103 [41] Urban M, Blaško M, Černušak I, Neogrády P and Pitoňak M 2018 Chem. Listy (in Czech and Slovak) 112 683 [42] Lane N F 1980 Rev. Mod. Phys. 52 29 [43] Itikawa Y 1997 Int. Rev. Phys. Chem. 16 155 [44] Hey J D 2013 J. Phys. B: At. Mol. Opt. Phys. 46 175702 [45] Krech R H and McFadden D L 1977 J. Am. Chem. Soc. 99 8402 [46] Ghanty T K and Ghosh S K 1993 J. Phys. Chem. 97 4951 [47] Hohm U 1994 J. Chem. Phys. 101 6362 [48] Chattaraj P K and Poddar A 1999 J. Phys. Chem. A 103 1274 [49] Hohm U 2000 J. Phys. Chem. A 104 8418 [50] Chattaraj P K, Roy D R, Elango M and Subramanian V 2005 J. Phys. Chem. A 109 9590 [51] Blair S A and Thakkar A J 2013 Chem. Phys. Lett. 556 346 [52] Sabirov D S, Garipova R R and Cataldo F 2018 Mol. Astrophys. 12 10 [53] Sharipov A S and Loukhovitski B I 2019 Struct. Chem. 30 2057 [54] Nelson Jr R D, Lide Jr D R and Maryott A A 1967 Selected values of electric dipole moments for molecules in the gas phase Tech. rep. National Standard Reference Data Series, National Bureau of Standards 10 [55] Lide D R (ed) 2010 CRC Handbook of Chemistry and Physics 90th Edition (CRC press) [56] Hohm U 2013 J. Mol. Struct. 1054-1055 282 [57] Osipov A I and Uvarov A V 1992 Sov. Phys. Usp. 35 903 [58] Capitelli M, Ferreira C M, Gordiets B F and Osipov A I 2000 Plasma Kinetics in Atmospheric Gases (Springer Series on Atomic, Optical, and Plasma Physics Vol. 31) (Berlin: Springer-Verlag) [59] Bultel A, Cheron B G, Bourdon A, Motapon O and Schneider I F 2006 Phys. Plasmas 13 043502 [60] Colonna G, D'Ammando G, Pietanza L D and Capitelli M 2015 Plasma Phys. Control. Fusion 57 014009 [61] Kadochnikov I N, Loukhovitski B I and Starik A M 2015 Plasma Sources Sci. Technol. 24 055008 [62] Celiberto R, Armenise I, Cacciatore M, Capitelli M, Esposito F, Gamallo P, Janev R K, Laganá A, Laporta V, Laricchiuta A, Lombardi A, Rutigliano M, Sayós R, Tennyson J and Wadehra J M 2016 Plasma Sources Sci. Technol. 25 033004 [63] Kadochnikov I N and Arsentiev I V 2018 J. Phys. D: Appl. Phys. 51 374001 [64] Lukhovitskii B I, Sharipov A S, Arsent'ev I V, Kuzmitskii V V and Penyazkov O G 2020 J. Eng. Phys. Thermophys. 93 850 [65] Kadochnikov I N, Loukhovitski B I and Starik A M 2013 Phys. Scr. 88 058306 [66] Cvetanovic R J 1974 Can. J. Chem. 52 1452 [67] Yankovsky V A and Manuilova R O 2006 Ann. Geophys. 24 2823 [68] Krasnopolsky V A 2011 Planet. Space Sci. 59 754 [69] Kirillov A S 2012 J. Atmos. Sol.-Terr. Phys. 81-82 9 [70] Askaryan G A 1966 JETP Letters (in Russian) 4 400 [71] Starik A M, Pelevkin A V and Titova N S 2017 Combust. Flame 176 81 [72] Azyazov V N 2009 Quantum Electron. 39 989 [73] Kathrotia T, Fikri M, Bozkurt M, Hartmann M, Riedel U and Schulz C 2010 Combust. Flame 157 1261 [74] Bystrov N, Emelianov A, Eremin A, Loukhovitski B, Sharipov A and Yatsenko P 2020 Combust. Flame 218 121 [75] Kamaratos E 2005 Cent. Eur. J. Chem. 3 387 [76] Fridman A 2008 Plasma Chemistry (Cambridge: Cambridge University Press) [77] Shkurenkov I, Burnette D, Lempert WR and Adamovich I V 2014 Plasma Sources Sci. Technol. 23 065003 [78] Popov N A and Starikovskaia S M 2022 Prog. Energy Combust. Sci. 91 100928 [79] Starikovskiy A and Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61 [80] Starik A M, Loukhovitski B I, Sharipov A S and Titova N S 2015 Phil. Trans. R. Soc. A 373 20140341 [81] Ju Y, Lefkowitz J K, Reuter C B, Won S H, Yang X, Yang S, Sun W, Jiang Z and Chen Q 2016 Plasma Chem. Plasma Process 36 85 [82] Popov N A 2016 Plasma Sources Sci. Technol. 25 043002 [83] Starikovskaia S, Lacoste D A and Colonna G 2021 Eur. Phys. J. D 75 231 [84] Tropina A A, New-Tolley M R and Shneider M N 2020 AIAA Scitech 2020 Forum 1892 [85] Urban M and Sadlej A J 1990 Theor. Chim. Acta 78 189 [86] Ruud K, Mennucci B, Cammi R and Frediani L 2004 J. Comput. Methods Sci. Eng. 4 381 [87] Medved' M, Budzák Š and Pluta T 2015 Theor. Chem. Acc. 134 78 [88] Jacquemin D 2016 J. Chem. Theory Comput. 12 3993 [89] Kanis D R, Ratner M A and Marks T J 1994 Chem. Rev. 94 195 [90] Bredas J L, Cornil J, Beljonne D, Dos Santos D A and Shuai Z 1999 Acc. Chem. Res. 32 267 [91] Grozema F C, Telesca R, Jonkman H T, Siebbeles L D A and Snijders J G 2001 J. Chem. Phys. 115 10014 [92] DeFusco A, Minezawa N, Slipchenko L V, Zahariev F and Gordon M S 2011 J. Phys. Chem. Lett. 2 2184 [93] Pašteka L F, Melicherčik M, Neogrády P and Urban M 2012 Mol. Phys. 110 2219 [94] Hemmerling B and Kozlov D N 2003 Chem. Phys. 291 213 [95] Cao S Q, Su M G, Jiao Z H, Min Q, Sun D X, Ma P P, Wang K P and Dong C Z 2018 Phys. Plasmas 25 063302 [96] Bel'skii V M, Mikhailov A L, Rodionov A V and Sedov A A 2011 Combust. Expl. Shock Waves 47 639 [97] Li L, Hu H, Tang P, Chen B, Tian J and Jiang B 2021 IEEE Access 9 51595 [98] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091 [99] Snigirev S, Golovizin A, Tregubov D, Pyatchenkov S, Sukachev D, Akimov A, Sorokin V and Kolachevsky N 2014 Phys. Rev. A 89 012510 [100] Fan H, Kumar S, Sedlacek J, Kübler H, Karimkashi S and Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001 [101] Liu P L, Huang Y, Bian W, Shao H, Qian Y, Guan H, Tang L Y and Gao K L 2015 Chin. Phys. B 24 039501 [102] Zhou M and Tang L Y 2021 Chin. Phys. B 30 083102 [103] Wei Y F, Tang Z M, Li C B, Yang Y, Zou Y M, Cui K F and Huang X R 2022 Chin. Phys. B 31 083102 [104] Poulsen T D, Ogilby P R and Mikkelsen K V 1998 J. Phys. Chem. A 102 8970 [105] Trsic M, Uzhinov B M and Matzke P 1970 Mol. Phys. 18 851 [106] Andersson K and Sadlej A J 1992 Phys. Rev. A 46 2356 [107] Fuentealba P, Simon-Manso Y and Chattaraj P K 2000 J. Phys. Chem. A 104 3185 [108] Paleníková J, Kraus M, Neogrády P, Kellö V and Urban M 2008 Mol. Phys. 106 2333 [109] Sharipov A, Loukhovitski B and Pelevkin A 2021 Physical-Chemical Kinetics in Gas Dynamics (in Russian, English abstract) 22 [110] Talebpour A, Petit S and Chin S L 1999 Opt. Commun. 171 285 [111] Smid T S 1993 Radio Sci. 28 361 [112] Takahashi Y, Yamada K and Abe T 2014 J. Spacecraft Rockets 51 430 [113] Kuverova V V, Adamson S O, Berlin A A, Bychkov V L, Dmitriev A V, Dyakov Y A, Eppelbaum L V, Golubkov G V, Lushnikov A A, Manzhelii M I, Morozov A N, Nabiev S S, Shapovalov V L, Suvorova A V and Golubkov M G 2019 Adv. Space Res. 64 1876 [114] Golubkov G V, Manzhelii M I, Berlin A A, Eppelbaum L V, Lushnikov A A, Morozov I I, Dmitriev A V, Adamson S O, Dyakov Y A, Morozov A N and Golubkov M G 2020 Atmosphere 11 650 [115] Golubkov G V, Golubkov M G and Manzhelii M I 2014 Russ. J. Phys. Chem. B 8 103 [116] Kustova E V and Puzyreva L A 2009 Phys. Rev. E 80 046407 [117] Capitelli M, Bruno D, Colonna G, Catalfamo C and Laricchiuta A 2009 J. Phys. D: Appl. Phys. 42 194005 [118] Pineda D I and Chen J Y 2016 Effects of updated transport properties of singlet oxygen species on steady laminar flame simulations Western States Section Spring Technical Meeting of the Combustion Institute (Seattle, WA: Combustion Institute) pp. 139LF-0021 [119] Istomin V A and Kustova E V 2017 Chem. Phys. 485 125 [120] Chernov V E, Dorofeev D L, Kretinin I Y and Zon B A 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2289 [121] Kamenski A A and Ovsiannikov V D 2014 J. Phys. B: At. Mol. Opt. Phys. 47 095002 [122] de Wergifosse M and Grimme S 2021 J. Phys. Chem. A 125 3841 [123] Paterson M J, Christiansen O, Jensen F and Ogilby P R 2006 Photochem. Photobiol. 82 1136 [124] Dorogan I V 2007 Russ. J. Gen. Chem. 78 774 [125] Ghosh S, Verma P, Cramer C J, Gagliardi L and Truhlar D G 2018 Chem. Rev. 118 7249 [126] Dong H, Jiang J, Wu Z, Dong C and Gaigalas G 2021 Chin. Phys. B 30 043103 [127] Stanton J F and Bartlett R J 1993 J. Chem. Phys. 98 7029 [128] Nanda K D and Krylov A I 2016 J. Chem. Phys. 145 204116 [129] Jansik B, Jonsson D, Salek P and Ågren H 2004 J. Chem. Phys. 121 7595 [130] Morgillo C, Korsaye F A, Ottochian A, Adamo C and Ciofini I 2021 Theor. Chem. Acc. 140 158 [131] Liang Y, Wu J, Li H, Tian R, Yuan C, Wang Y, Kudryavtsev A A, Zhou Z and Tian H 2019 Phys. Plasmas 26 043704 [132] Parasuk V, Neogrády P, Lischka H and Urban M 1996 J. Phys. Chem. 100 6325 [133] Jonsson D, Norman P and Ågren H 1997 Chem. Phys. 224 201 [134] Casida M E, Jamorski C, Casida K C and Salahub D R 1998 J. Chem. Phys. 108 4439 [135] Boyé-Péronne S, Gauyacq D and Liévin J 2014 J. Chem. Phys. 141 174317 [136] McDowell K 1976 J. Chem. Phys. 65 2518 [137] Kondrati'ev D A, Beigman D A and Vainshtein L A 2008 Bull. Lebedev Phys. Inst. 35 355 [138] Li Y, Vrbik J and Rothstein S M 2007 Chem. Phys. Lett. 445 345 [139] Grimes R M, Dupuis M and Lester Jr W A 1984 Chem. Phys. Lett. 28 247 [140] Minaev B F 2007 Russ. Chem. Rev. 76 989 [141] Pelevkin A V and Sharipov A S 2019 Plasma Chem. Plasma Process. 39 1533 [142] Cammi R, Frediani L, Mennucci B and Ruud K 2003 J. Chem. Phys. 119 5818 [143] Sharipov A S, Loukhovitski B I and Starik A M 2015 Eur. Phys. J. D 69 211 [144] Loukhovitski B I, Sharipov A S and Starik A M 2015 J. Phys. Chem. A 119 1369 [145] Adamov N M and Malykhanov Y B 1989 J. Struct. Chem. 29 790 [146] Hinchliffe A, Soscún H J, Mkadmh A and Abu-Awwad F M 2005 Int. J. Appl. Chem. 1 71 [147] Hinchliffe A, Soscún H J, Mkadmh A and Abu-Awwad F M 2006 J. Comput. Methods Sci. Eng. 6 165 [148] Jones M and Tennyson J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045101 [149] Mérawa M and Rérat M 2001 Eur. Phys. J. D 17 329 [150] Mérawa M, Bégué D and Dargelos A 2003 J. Phys. Chem. A 107 9628 [151] Ghoneim N and Suppan P 1990 J. Chem. Soc. Faraday Trans. 86 2079 [152] Sinha H K, Thomson P C P and Yates K 1990 Can. J. Chem. 68 1507 [153] Thakkar A J and Lupinetti C 2005 Chem. Phys. Lett. 402 270 [154] Roos B O 1987 The complete active space self-consistent field method and its applications in electronic structure calculations Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry Part 2 Vol. 69 ed Lawley K P (John Wiley & Sons, Inc., Hoboken, NJ, USA.) [155] Schmidt M W and Gordon M S 1998 Annu. Rev. Phys. Chem. 49 233 [156] Freidzon A and Tsybizova A 2017 CASSCF and Firefly: A tutorial (accessed may 2022) [157] Granovsky A A 2011 J. Chem. Phys. 134 214113 [158] Kendall R A, Dunning Jr T H and Harrison R J 1992 J. Chem. Phys. 96 6796 [159] Sadlej A J 1988 Collec. Czech. Chem. Commun. 53 1995 [160] Kurtz H A, Stewart J J and Dieter K M 1990 J. Comput. Chem. 11 82 [161] Granovsky A A Firefly V 8.2.0 (accessed jan 2019)http://classic.chem.msu.su/gran/firefly/index.html [162] Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M and Montgomery J A 1993 J. Comput. Chem. 14 1347 [163] Avramopoulos A, Ingamells V E, Papadopoulos M G and Sadlej A J 2001 J. Chem. Phys. 114 198 [164] Kalugina Y N and Thakkar A J 2015 Mol. Phys. 113 2939 [165] Schwerdtfeger P and Nagle J K 2019 Mol. Phys. 117 1200 [166] Smirnov B M 1980 Sov. Phys. Usp. 23 450 [167] Delone N B, Krainov V P and Shepelyanskii D L 1983 Sov. Phys. Usp. 26 551 [168] Cambi R, Cappelletti D, Liuti G and Pirani F 1991 J. Chem. Phys. 95 1852 [169] Adelman S A and Szabo A 1973 J. Chem. Phys. 58 687 [170] Lai Z, Zhang S, Gou Q and Li Y 2018 Phys. Rev. A 98 052503 [171] Barenblatt G I 1996 Scaling, self-similarity, and intermediate asymptotics (Cambridge University Press) [172] Minaev B F and Minaeva V A 2001 Phys. Chem. Chem. Phys. 3 720 [173] Williams J H 1988 Chem. Phys. Lett. 147 585 [174] Hellmann H G A 1937 Einführung in die Quantenchemie (Deuticke: Leipzig and Wien, in German) [175] Dmitrieva I K and Plindov G I 1983 Phys. Scr. 27 402 [176] Dmitrieva I K and Plindov G I 1986 J. Appl. Spectrosc. 44 4 [177] Fricke B 1986 J. Chem. Phys. 84 862 [178] Hati S and Datta D 1996 J. Phys. Chem. 100 4828 [179] Politzer P, Jin P and Murray J S 2002 J. Chem. Phys. 117 8197 [180] Reed III T M 1955 J. Phys. Chem. 59 428 [181] Blair S A and Thakkar A J 2014 J. Chem. Phys. 141 074306 [182] Chandrakumar K R S, Ghanty T K and Ghosh S K 2004 J. Phys. Chem. A 108 6661 [183] Li X B, Wang H Y, Lv R, Wu W D, Luo J S and Tang Y J 2009 J. Phys. Chem. A 113 10335 [184] Gupta K, Ghanty T K and Ghosh S K 2012 J. Phys. Chem. A 116 6831 [185] Afeefy H Y, Liebman J F and Stein S E 2021 NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov) chap Neutral Thermochemical Data [186] Johnson III R D 2010 NIST computational chemistry comparison and benchmark database, NIST standard reference database number 101 release 15a [187] Bravaya K B, Kostko O, Dolgikh S, Landau A, Ahmed M and Krylov A I 2010 J. Phys. Chem. A 114 12305 [188] Gurvich L V, Veyts I V and Alcock C B 1989 Thermodynamics Properties of Individual Substances (New York: Hemisphere Pub. Co., New York) [189] Roos B O, Andersson K and Fulscher M P 1992 Chem. Phys. Lett. 192 5 [190] Boldyrev A I, Simons J and von R Schleyer P 1993 J. Chem. Phys. 99 8793 [191] Rubio M, Merchán M, Ortí E and Roos B O 1994 Chem. Phys. 179 395 [192] Moriyama H, Wasada-Tsutsui Y, Sekiya M and Tatewaki H 2003 J. Chem. Phys. 118 5413 [193] Kvålseth T O 1985 Am. Stat. 39 219 [194] Themelis S I and Nicolaides C A 1995 Phys. Rev. A 52 2439 [195] Ye A P and Wang G F 2008 Phys. Rev. A 78 014502 [196] Yerokhin V A, Buhmann S Y, Fritzsche S and Surzhykov A 2016 Phys. Rev. A 94 032503 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|