Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040702    DOI: 10.1088/1674-1056/ac7e38
GENERAL Prev   Next  

A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography

Qing-Qian Guo(郭清乾)1,2,3, Tao Hu(胡涛)1,3,†, Xiao-Yu Feng(冯晓宇)3, Ming-Kang Zhang(张明康)4, Chun-Qiao Chen(陈春巧)4, Xin Zhang(张欣)1,2,3, Ze-Kun Yao(姚泽坤)4, Jia-Yu Xu(徐佳玉)4, Qing Wang(王青)1,2,3, Fang-Yue Fu(付方跃)4, Yin Zhang(张寅)1,3, Yan Chang(常严)1,3, and Xiao-Dong Yang(杨晓冬)3,1,‡
1 Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
2 School of Biomedical Engineering(Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China;
3 Jihua Laboratory, Foshan 528000, China;
4 School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
Abstract  Atomic magnetometers operated in the spin-exchange relaxation-free (SERF) regime are the promising sensor to replace superconducting quantum interference devices (SQUIDs) in the biomagnetism field. The SERF magnetometer with compact size and good performance is crucial to the new generation of wearable magnetoencephalography (MEG) system. In this paper, we developed a compact and closed-loop SERF magnetometer with the dimensions of 15.0×22.0×30.0 mm3 based on a single-beam configuration. The bandwidth of the magnetometer was extended to 675 Hz while the sensitivity was maintained at 22 fT/Hz1/2. A nearly 3-fold enhancement of the bandwidth was obtained in comparison with the open-loop control. The implementation of the closed-loop control also greatly improved the dynamic range, enabling the magnetometer to be robust against the disturbance of the ambient field. Moreover, the magnetometer was successfully applied for the detection of human α -rhythm and auditory evoked fields (AEFs), which demonstrated the potential to be extended to multi-channel MEG measurements for future neuroscience studies.
Keywords:  atomic magnetometer      miniaturization      closed-loop      magnetoencephalography (MEG)  
Received:  03 May 2022      Revised:  24 June 2022      Accepted manuscript online:  05 July 2022
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  87.85.-d (Biomedical engineering)  
  87.85.Pq (Biomedical imaging)  
Fund: Project supported by Ji Hua Laboratory (Grant No. X190131TD190), the Research and Development Project for Equipment of Chinese Academy of Sciences (Grant No. YJKYYQ20210051), the Suzhou pilot project of basic research (Grant No. SJC2021024), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200215).
Corresponding Authors:  Tao Hu, Xiao-Dong Yang     E-mail:;

Cite this article: 

Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬) A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography 2023 Chin. Phys. B 32 040702

[1] Cohen D 1972 Science 175 664
[2] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Munoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R and Brookes M J 2018 Nature 555 657
[3] Hämäläinen M, Hari R, Ilmoniemi R J, Knuutila J and Lounasmaa O V 1993 Rev. Mod. Phys. 65 413
[4] Boto E, Meyer S S, Shah V, Alem O, Knappe S, Kruger P, Fromhold T M, Lim M, Glover P M, Morris P G, Bowtell R, Barnes G R and Brookes M J 2017 NeuroImage 149 404
[5] Roberts G, Holmes N, Alexander N, Boto E, Leggett J, Hill R M, Shah V, Rea M, Vaughan R, Maguire E A, Kessler K, Beebe S, Fromhold M, Barnes G R, Bowtell R and Brookes M J 2019 Neuroimage 199 408
[6] Hill R M, Boto E, Holmes N, Hartley C, Seedat Z A, Leggett J, Roberts G, Shah V, Tierney T M, Woolrich M W, Stagg C J, Barnes G R, Bowtell R, Slater R and Brookes M J 2019 Nat. Commun. 10 4785
[7] Boto E, Hill R M, Rhodes N, Osborne J, Doyle C, Holmes N, Rea M, Leggett J, Bowtell R and Brookes M J 2022 NeuroImage 252 119027
[8] Tierney T M, Levy A, Barry D N, Meyer S S, Shigihara Y, Everatt M, Mellor S, Lopez J D, Bestmann S, Holmes N, Roberts G, Hill R M, Boto E, Leggett J, Shah V, Brookes M J, Bowtell R, Maguire E A and Barnes G R 2021 Neuroimage 225 117443
[9] Sheng J, Wan S, Sun Y, Dou R, Guo Y, Wei K, He K, Qin J and Gao J H 2017 Rev. Sci. Instrum. 88 094304
[10] Hill R M, Boto E, Rea M, Holmes N, Leggett J, Coles L A, Papastavrou M, Everton S K, Hunt B A E, Sims D, Osborne J, Shah V, Bowtell R and Brookes M J 2020 Neuroimage 219 116995
[11] Guo Q Q, Hu T, Chen C Q, Feng X Y, Wu Z Y, Zhang Y, Zhang M K, Chang Y and Yang X D 2021 IEEE Sens. J. 21 21425
[12] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[13] Ito Y, Ohnishi H, Kamada K and Kobayashi T 2011 IEEE Trans. Magn. 47 3550
[14] Li J D, Quan W, Zhou B Q, Wang Z, Lu J X, Hu Z H, Liu G and Fang J C 2018 IEEE Sens. J. 18 8198
[15] Mhaskar R, Knappe S and Kitching J 2012 Appl. Phys. Lett. 101 241105
[16] Liu G, Tang J, Yin Y, Wang Y, Zhou B and Han B 2020 IEEE Sens. J. 20 5827
[17] Zhang G, Zeng H, Tan G and Lin Q 2022 IEEE Sens. J. 22 7700
[18] Du P C, Li J J, Yang S J, Wang X T, Zhuo Y, Wang F and Wang R Q 2019 Chin. Phys B 28 040702
[19] Osborne J, Orton J, Alem O and Shah V 2018 Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI, 22 February, 2018, California, United States, p. 105481G
[20] Barry D N, Tierney T M, Holmes N, Boto E, Roberts G, Leggett J, Bowtell R, Brookes M J, Barnes G R and Maguire E A 2019 Neuroimage 203 116192
[21] Tierney T M, Holmes N, Meyer S S, Boto E, Roberts G, Leggett J, Buck S, Duque-Munoz L, Litvak V, Bestmann S, Baldeweg T, Bowtell R, Brookes M J and Barnes G R 2018 Neuroimage 181 513
[22] Zhang X, Chen C Q, Zhang M K, Ma C Y, Zhang Y, Wang H, Guo Q Q, Hu T, Liu Z B, Chang Y, Hu K J and Yang X D 2020 J Neurosci Methods 346 108948
[23] Baillet S 2017 Nat. Neurosci. 20 327
[24] T Fedele H J S, M Burghoff, G Curio and R Körber 2015 Physiol. Meas. 36 357
[25] Lopes da Silva F 2013 Neuron 80 1112
[26] Holmes N, Leggett J, Boto E, Roberts G, Hill R M, Tierney T M, Shah V, Barnes G R, Brookes M J and Bowtell R 2018 Neuroimage 181 760
[27] Ledbetter M P, Savukov I M, Acosta V M, Budker D and Romalis M V 2008 Phys. Rev. A 77 033408
[28] Tang J, Yin Y, Zhai Y, Zhou B, Han B, Yang H and Liu G 2021 Opt. Express 29 8333
[29] Cohen-Tannoudji C, Dupont-Roc J, Haroche S and Lalo€ E F 1970 Rev. Phys. Appl. 5 95
[30] Tierney T M, Holmes N, Mellor S, Lopez J D, Roberts G, Hill R M, Boto E, Leggett J, Shah V, Brookes M J, Bowtell R and Barnes G R 2019 NeuroImage 199 598
[1] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[2] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[3] Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept
Xi-Le Wei(魏熙乐), Yu-Lin Bai(白玉林), Jiang Wang(王江), Si-Yuan Chang(常思远), and Chen Liu(刘晨). Chin. Phys. B, 2022, 31(12): 128701.
[4] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[5] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[6] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[7] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[8] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[9] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[10] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[11] Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄). Chin. Phys. B, 2017, 26(6): 067801.
[12] Spin dynamics of magnetic resonance with parametric modulation in a potassium vapor cell
Rui Zhang(张锐), Zhi-Guo Wang(汪之国), Xiang Peng(彭翔), Wen-Hao Li(黎文浩), Song-Jian Li(李松健), Hong Guo(郭弘). Chin. Phys. B, 2017, 26(3): 030701.
[13] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
[14] Fabrication and formation mechanism of closed-loop fibers by electrospinning with a tip collector
Xu Yan(闫旭), Miao Yu(于淼), Wen-Peng Han(韩文鹏), Ming-Hao You(犹明浩), Jun-Cheng Zhang(张君诚), Rui-Hua Dong(董瑞华), Hong-Di Zhang(张红娣), Yun-Ze Long(龙云泽). Chin. Phys. B, 2016, 25(7): 078106.
[15] Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime
Ji-Qing Fu(伏吉庆), Peng-Cheng Du(杜鹏程), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2016, 25(1): 010302.
No Suggested Reading articles found!