Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017501    DOI: 10.1088/1674-1056/ac981f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields

Jia-Sheng Dong(董家生)1, Pengcheng Lu(路鹏程)1,2, Pei Sun(孙佩)3,4,5,†, Yi Qiao(乔艺)2,4,5, Junpeng Cao(曹俊鹏)2,4,6,7, Kun Hao(郝昆)1,4,5, and Wen-Li Yang(杨文力)1,4,5
1 Institute of Modern Physics, Northwest University, Xi'an 710127, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physics, Northwest University, Xi'an 710127, China;
4 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China;
5 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China;
6 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
7 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We study the physical properties of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields. By using a combination of numerical analysis and analytical method, we obtain the surface energy and elementary excitations of the model. It shows that the contributions of the two boundary fields to the surface energy are additive. We also find that there exists a kind of excitations related to the boundary string.
Keywords:  quantum spin chain      integrable systems      Bethe ansatz  
Received:  12 July 2022      Revised:  02 October 2022      Accepted manuscript online:  07 October 2022
PACS:  75.10.Pq (Spin chain models)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
Fund: We would like to thank Professor Y. Wang for his valuable discussions and continuous encouragement. The financial supports from the National Key R&D Program of China (Grant No. 2021YFA1402104), the National Natural Science Foundation of China (Grant Nos. 12074410, 12047502, 12147160, 11934015, 11975183, and 11947301), Major Basic Research Program of Natural Science of Shaanxi Province, China (Grant Nos. 2021JCW-19 and 2017ZDJC-32), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000), Double First-Class University Construction Project of Northwest University, and the fellowship of China Postdoctoral Science Foundation (Grant Nos. 2020M680724 and 2022M712580) are gratefully acknowledged.
Corresponding Authors:  Pei Sun     E-mail:  sunpei@nwu.edu.cn

Cite this article: 

Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力) Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields 2023 Chin. Phys. B 32 017501

[1] Onsager L 1944 Phys. Rev. 65 117
[2] Lieb E H and Wu F 1968 Phys. Rev. Lett. 20 1445
[3] Bogoliubov N and Kulish P 2013 J. Math. Sci. 192 14
[4] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic Press)
[5] Beisert N, Ahn C, et al. 2012 Lett. Math. Phys. 99 3
[6] Heisenberg W 1928 Z. Phys. 49 619
[7] Bethe H 1931 Z. Phys. 71 205
[8] Yang C N and Yang C P 1966 Phys. Rev. 150 321
[9] Yang C N and Yang C P 1966 Phys. Rev. 150 327
[10] Baxter R J 1971 Phys. Rev. Lett. 26 832
[11] Johnson J D, Krinsky S and McCoy B M 1973 Phys. Rev. A 8 2526
[12] Sklyanin E K 1988 J. Phys. A 21 2375
[13] Sklyanin E K and Faddeev L D 1978 Dokl. Akad. Nauk Ser. Fiz. 243 1430
[14] Takhtadzhyan L A and Faddeev L D 1981 Zap. Nauchn. Sem. LOMI 109 134
[15] Korepin V E, Boliubov N M and Izergin A G 1993 Quantum Inverse Scattering Method and Correlation Functions (UK: Cambridge University Press)
[16] Cao J P, Yang W L, Shi K J and Wang Y P 2013 Phys. Rev. Lett. 111 137201
[17] Wang Y P, Yang W L, Cao J P and Shi K J 2015 Off-Diagonal Bethe Ansatz for Exactly Solvable Models (Springer Press)
[18] Cao J P, Yang W L, Shi K J and Wang Y P 2013 Nucl. Phys. B 875 152
[19] Zhang X, Li Y Y, Cao J P, Yang W L, Shi K J and Wang Y P 2015 J. Stat. Mech.: Theory Exp. 5 P05014
[20] Yang C N and Yang C P 1969 J. Math. Phys. 10 1115
[21] Takahashi M 1999 Thermodynamics of one-dimensional solvable models (UK: Cambridge University Press)
[22] Jiang Y, Cui S, Cao J P, Yang W L and Wang Y P arXiv:1309.6456
[23] Nepomechie R I and Wang C 2013 J. Phys. A: Math. Theor. 47 032001
[24] Wen F, Yang T, Yang Z, Cao J P, Hao K and Yang W L 2017 Nucl. Phys. B 915 119
[25] Qiao Y, Cao J P, Yang W L, Shi K J and Wang Y P 2021 Phys. Rev. B 103 L220401
[26] Le X, Qiao Y, Cao J P, Yang W L, Shi K J and Wang Y P 2021 JHEP 11 044
[27] Cao J P, Yang W L, Shi K J and Wang Y P 2014 JHEP 04 143
[28] Li G L, Cao J P, Xue P, Hao K, Sun P, Yang W L, Shi K J and Wang Y P 2019 Nucl. Phys. B 946 114719
[29] Li G L, Cao J P, Xue P, Hao K, Sun P and Yang W L 2019 JHEP 12 051
[30] Li G L, Cao J P, Yang W L, Shi K J and Wang Y P 2022 JHEP 04 101
[1] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[2] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[3] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
[4] Exact solution of a topological spin ring with an impurity
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅). Chin. Phys. B, 2020, 29(6): 067501.
[5] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
M Baradaran, H Panahi. Chin. Phys. B, 2017, 26(6): 060301.
[6] Exact solution of Heisenberg model with site-dependent exchange couplings and Dzyloshinsky-Moriya interaction
Yang Li-Jun (杨丽君), Cao Jun-Peng (曹俊鹏), Yang Wen-Li (杨文力). Chin. Phys. B, 2015, 24(10): 107502.
[7] Deformed oscillator algebra for quantum superintegrable systems in two-dimensional Euclidean space and on the complex two-sphere
H. Panahi, Z. Alizadeh. Chin. Phys. B, 2013, 22(6): 060304.
[8] BETHE ANSATZ FOR SUPERSYMMETRIC MODEL WITH Uq[osp(1|2)] SYMMETRY
Yang Wen-li (杨文力). Chin. Phys. B, 2001, 10(2): 109-112.
No Suggested Reading articles found!