Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 044212    DOI: 10.1088/1674-1056/ac81a9

Design and simulation of a silicon-based hybrid integrated optical gyroscope system

Dao-Xin Sun(孙道鑫)1, Dong-Liang Zhang(张东亮)1,†, Li-Dan Lu(鹿利单)1, Tao Xu(徐涛)1, Xian-Tong Zheng(郑显通)1, Zhe-Hai Zhou(周哲海)2,‡, and Lian-Qing Zhu(祝连庆)1
1 Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science&Technology University, Beijing 100192, China;
2 Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science&Technology University, Beijing 100016, China
Abstract  By combining a silicon-based lithium niobate modulator and a silicon-based Si3N4 resonator with silicon-based photonics technology, a highly systematic design of a hybrid integrated optical gyroscope with enhanced reciprocity sensitivity and a dual micro-ring structure is proposed for the first time in this paper. The relationship between the device's structural parameters and optical performance is also analyzed by constructing a complete simulation link, which provides a theoretical design reference to improve the system's sensitivity. When the wavelength is 1550 nm, the conversion frequency of the dual-ring optical path is 50 MHz, the coupling coefficient is 0.2, and the radius R is 1000 μm, the quality factor of the silicon-based Si3N4 resonator is 2.58×105, which is 1.58 times that of the silicon-on-insulator resonator. Moreover, the effective number of times the light travels around the ring before leaving the micro-ring is 5.93, which is 1.62 times that of the silicon-on-insulator resonator. The work fits the gyro dynamic output diagram, and solves the problem of low sensitivity at low speed by setting the phase offset. This results provide a basis for the further optimization of design and chip processing of the integrated optical gyroscope.
Keywords:  silicon photonics      integrated optical gyroscope      micro-ring resonator      Sagnac effect  
Received:  05 May 2022      Revised:  11 July 2022      Accepted manuscript online:  18 July 2022
PACS:  42.81.Pa (Sensors, gyros)  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.82.-m (Integrated optics)  
  42.82.Fv (Hybrid systems)  
Fund: Project supported by the science and technology general project of Beijing Municipal Education Commission (Grant No. KM202111232019), Beijing Municipal Natural Science Foundation (Grant No. 2214058), the Discipline Innovation Program of Higher Education (Grant No. D17021), the Open Project of the State Key Laboratory of Integrated Optoelectronics (Grant No. IOSKL2020KF22), Beijing Great Wall Scholars Program (Grant No. CIT&TCD20190323), the National Natural Science Foundation of China (Grant No. 61875237), and Beijing Youth Talent Support Program (Grant No. Z2019042).
Corresponding Authors:  Dong-Liang Zhang, Zhe-Hai Zhou     E-mail:;

Cite this article: 

Dao-Xin Sun(孙道鑫), Dong-Liang Zhang(张东亮), Li-Dan Lu(鹿利单), Tao Xu(徐涛),Xian-Tong Zheng(郑显通), Zhe-Hai Zhou(周哲海), and Lian-Qing Zhu(祝连庆) Design and simulation of a silicon-based hybrid integrated optical gyroscope system 2023 Chin. Phys. B 32 044212

[1] Zhang G C 2008 The Principle and Technology of Fiber Optic Gyroscope (Beijing: National Defence Industry Press) pp. 1-36
[2] Zhang Y S, Zhang C X, Feng L S, et al. 2017 Optoelectronics and Optical Gyroscopes (Beijing: Tsinghua University Press) pp. 513-519
[3] Liu D N, Qing C, Li H, et al. 2020 The 4th National Autonomous Navigation Academic Conference-Technology and Application of Photonic Crystal Fiber Gyroscope and Related Devices, December 11-15, 2020, Xi'an, China, pp. 9-14
[4] Feng L S, Wang X, Liu D N, et al. 2016 Symposium on Development and Application of Optical Gyro and System Technology, September 26-27, 2016, Jiangxi, China, pp. 72-76
[5] Bi F, Zhang D L, Lu L D, Zhu L Q 2021 Laser & Optoelectronics Progress 58 7
[6] Dai D 2018 Proc. IEEE 106 2117
[7] Lim A E J, Song J, Fang Q, et al. 2013 IEEE J. Sel. Top. Quant. Electron. 20 405
[8] Talebifard S, Schmidt S, Shi W, et al. 2017 Biomed. Opt. Express 8 500
[9] Ciminelli C, Dell'Olio F, Armenise M N, et al. 2013 Opt. Express 21 556
[10] Spencer D T, Bauters J F, Heck M J, et al. 2014 Optica 1 153
[11] Maiti R, Hemnani R A, Amin R, et al. 2019 Nanophotonics 8 435
[12] Yin Y X, Yin X J, Zhang X P, et al. 2021 Photonics 8 141
[13] Yu H Y, Zhang C X, Feng L S, Hong L F and Wang J J 2011 Chin. Phys. Lett. 28 084203
[14] Ciminelli C, Campanella C E, Dell'Olio F, et al. 2013 Journal of the European Optical Society-Rapid Publications 8
[15] Feng L, Wang J, Zhi Y, et al. 2014 Opt. Express 5 158
[16] Khial P P, White A D, Hajimiri A 2018 Nat. Photon. 12 671
[17] Mohammadi M, Olyaee S, Seifouri M 2019 Silicon 11 2531
[18] Wu B B, Yu Y, Zhang X L 2019 Sci. Rep. 9 1
[19] Zhang L, Jie L L, Zhang M, et al. 2020 Photon. Res. 8 684
[20] Groote A D, Peters J D, Davenport M L, et al. 2014 Opt. Lett. 39 4784
[21] Komljenovic T, Srinivasan S 2015 IEEE J. Sel. Top. Quant. Electron. 21 214
[22] Zhang C, Srinivasan S, Tang Y M, et al. 2014 Opt. Express 22 10202
[23] Chen L, Chen J, Nagy J, et al. 2015 Opt. Express 23 13255
[24] He M, Xu M, Ren Y, et al. 2019 Nat. Photon. 13 359
[25] Yu Q C, Liang X R, Ma W D 2020 Opt. Commun. Technol. 44 37
[26] Bauters J F, Heck M J R, John D D, et al. 2011 Opt. Express 19 24090
[27] Blumenthal, Daniel J, Heideman, et al. 2018 Proc. IEEE 106 2209
[28] Post E J 1967 Rev. Mod. Phys. 39 475
[29] Lu H W, Wei J T, Zhao H, et al. 2016 Guangdong Communication Technology 36 76
[30] Li J Y, Lu D F and Qi Z M 2014 J. Phys. 63 321
[31] Sun D X, Zhang D L, Bi F, et al. 2021 Progress in Laser and Optoelectronics 10 1
[1] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[2] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[3] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[4] 16-channel dual-tuning wavelength division multiplexer/demultiplexer
Pei Yuan(袁配), Yue Wang(王玥), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), Xiong-Wei Hu(胡雄伟). Chin. Phys. B, 2018, 27(12): 124208.
[5] 1.3-μm InAs/GaAs quantum dots grown on Si substrates
Fu-Hui Shao(邵福会), Yi Zhang(张一), Xiang-Bin Su(苏向斌), Sheng-Wen Xie(谢圣文), Jin-Ming Shang(尚金铭), Yun-Hao Zhao(赵云昊), Chen-Yuan Cai(蔡晨元), Ren-Chao Che(车仁超), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 128105.
[6] Mechanical strains in pecvd SiNx:H films for nanophotonic application
O. Semenova, A. Kozelskaya, Li Zhi-Yong, Yu Yu-De. Chin. Phys. B, 2015, 24(10): 106801.
[7] On-chip optical pulse shaper for arbitrary waveform generation
Liao Sha-Sha (廖莎莎), Yang Ting (杨婷), Dong Jian-Ji (董建绩). Chin. Phys. B, 2014, 23(7): 073201.
[8] High-efficiency focusing grating coupler with optimized ultra-short taper
Yang Biao (杨彪), Li Zhi-Yong (李智勇), Yu Yu-De (俞育德), Yu Jin-Zhong (余金中). Chin. Phys. B, 2014, 23(11): 114206.
[9] A novel highly efficient grating coupler with large filling factor used for optoelectronic integration
Zhou Liang(周亮), Li Zhi-Yong(李智勇), and Zhu Yu(朱宇), Li Yun-Tao(李运涛), Fan Zhong-Cao(樊中朝), Han Wei-Hua(韩伟华), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中). Chin. Phys. B, 2010, 19(12): 124214.
[10] Precise relative rotation sensing using slow light
Wang Nan(王楠), Zhang Yun-Dong(掌蕴东), Wang Hao(王号), Tian He(田赫), Qiu Wei(邱巍), Wang Jin-Fang(王金芳), and Yuan Ping(袁萍). Chin. Phys. B, 2010, 19(1): 014216.
[11] All-fibre micro-ring resonator based on tapered microfibre
Dong Xiao-Wei(董小伟), Lu Shao-Hua(鲁韶华), Feng Su-Chun(冯素春), Xu Ou(许鸥), and Jian Shui-Sheng(简水生). Chin. Phys. B, 2008, 17(3): 1029-1033.
No Suggested Reading articles found!