Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 080703    DOI: 10.1088/1674-1056/ac98a0
GENERAL Prev   Next  

Loading uniform Ag3PO4 nanoparticles on three-dimensional peony-like WO3 for good stability and excellent selectivity towards NH3 at room temperature

Xingyan Shao(邵星炎)1,2, Fuchao Jia(贾福超)1,†, Tingting Liu(刘婷婷)1,2, Jiancheng Liu(刘健诚)1, Xiaomei Wang(王小梅)1, Guangchao Yin(尹广超)1, Na Lv(吕娜)3, Tong Zhou(周通)1, Ramachandran Rajan1,4, and Bo Liu(刘波)1,2,‡
1. Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China;
2. School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China;
3. Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China;
4. Translational Medical Center, Zibo Central Hospital, Zibo 255036, China
Abstract  A heterojunction structure design is a very good method for improving the properties of semiconductors in many research fields. This method is employed in the present study to promote the gas-sensing performance of Ag3PO4 nanocomposites at room temperature (25 ℃). A nanocomposite of Ag3PO4 nanoparticles and three-dimensional peony-like WO3 (WO3/Ag3PO4) was successfully prepared by the precipitation method. The crystalline phases were analyzed by x-ray diffraction and the microstructure was characterized by scanning electron microscopy and transmission electron microscopy. The chemical bonding states were analyzed by x-ray photoelectron spectroscopy. The gas-sensing performance of WO3/Ag3PO4 sensors was systematically explored at room temperature. The composite sensors possessed a higher response and lower detection limit (1 ppm) to NH3 than those made of a single type of material; this is ascribed to the synergistic effect achieved by the heterojunction structure. Among the different composite sensors tested, gas sensor A5W5 (Ag3PO4:WO3 mass ratio of 5:5) displayed the highest response to NH3 at room temperature. Interestingly, the A5W5 gas sensor exhibited relatively good stability and excellent selectivity to NH3. The A5W5 sensor also displayed a relatively good response under high humidity. The gas-sensing mechanism of the WO3/Ag3PO4 sensors is explained in detail. Taken together, the as-prepared sensor is highly efficient at detecting NH3 and could be suitable for practical applications. In addition, this study also provides a new method for developing Ag3PO4-based sensors in the gas-sensing field.
Keywords:  Ag3PO4      peony-like WO3      NH3      room temperature  
Received:  20 May 2022      Revised:  05 October 2022      Accepted manuscript online:  10 October 2022
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: The authors sincerely acknowledge the financial support from the Collaborative Education Project of Industry-University Cooperation of the Ministry of Education of China (Grant No.202101256024) and the National Natural Science Foundation of China (Grant Nos.11904209 and 61802144).
Corresponding Authors:  Fuchao Jia, Bo Liu     E-mail:  jiafuchao@sdut.edu.cn;liub@sdut.edu.cn

Cite this article: 

Xingyan Shao(邵星炎), Fuchao Jia(贾福超), Tingting Liu(刘婷婷), Jiancheng Liu(刘健诚), Xiaomei Wang(王小梅), Guangchao Yin(尹广超), Na Lv(吕娜), Tong Zhou(周通), Ramachandran Rajan, and Bo Liu(刘波) Loading uniform Ag3PO4 nanoparticles on three-dimensional peony-like WO3 for good stability and excellent selectivity towards NH3 at room temperature 2023 Chin. Phys. B 32 080703

[1] Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A and Phanichphant S 2011 Sens. Actuators B 160 580
[2] Toan N V, Hung C M, Hoa N D, Duy N V, Le D T T, Hoa N T T, Viet N N and Phuoc P H and Hieu N V 2021 J. Hazard. Mater. 412 125181
[3] Wang L, Lou Z, Zhang R, Zhou T, Deng J and Zhang T 2016 ACS Appl. Mater. Interfaces 8 6539
[4] Liu X, Chen N, Han B, Xiao X, Chen G, Djerdj I and Wang Y 2015 Nanoscale 7 14872
[5] Li Y, Ban H and Yang M 2016 Sens. Actuators B 224 449
[6] Moshirian-Farahi S S, Zamani H A and Abedi M R 2022 Nanotechnology 33 195502
[7] Patil L A, Bari A R, Shinde and Deo V 2010 Sensor Rev. 30 290
[8] Shao F, Fan J D, Hernández-Ramírez F, Fábrega C, Andreu T, Cabot A, Prades J D, López N, Udrea F, De Luca A, Ali S Z and Morante J R 2016 Sens. Actuators B 226 110
[9] Lee J, Lee S H, Bak S Y, Kim Y, Woo K, Lee S, Lim Y and Yi M 2019 Sensors 19 1903
[10] Nikolaev A L, Kazmina M A, Lyanguzov N V, Abdulvakhidov K G and Kaidashev E M 2022 J. Adv. Diele. 12 2160020
[11] Su P G, Chen F Y and Wei C H 2018 Sens. Actuators B 254 1125
[12] Zhao G, Xuan J, Gong Q, Wang L, Ren J, Sun M, Jia F, Yin G and Liu B 2020 ACS Appl. Mater. Interfaces 12 8573
[13] Cui S, Yang L, Wang J and Wang X 2016 Sens. Actuators B 233 337
[14] Lu T, Lv J and Wang C 2022 J. Alloy. Compd. 897 163135
[15] Jeevanandam J, Barhoum A, Chan Y S, Dufresne A and Danquah M K 2018 Beilstein J. Nanotech. 9 1050
[16] Li Z, Liu X, Zhou M, Zhang S, Cao S, Lei G, Lou C and Zhang J 2021 J. Hazard. Mater. 415 125757
[17] Zhang J, Liu X, Neri G and Pinna N 2016 Adv. Mater. 28 795
[18] Huo L, Yang X, Liu Z, Tian X, Qi T, Wang X, Yu K, Sun J and Fan M 2017 Sens. Actuators B 244 694
[19] Liu Z, Yang X, Huo L, Tian X, Qi T, Yang F, Wang X, Yu K, Ma F and Sun J 2017 Sens. Actuators B 248 324
[20] Zhou X, Wang X, Wang B, Chen Z, He C and Wu Y 2014 Sens. Actuators B 193 340
[21] Park M S, Kim K H, Kim M J and Lee YS 2016 Colloids Surf. A 490 104
[22] Yan F, Shen G, Yang X, Qi T, Sun J, Li X and Zhang M 2019 Appl. Surf. Sci. 479 1141
[23] Xiao W, Liu W, Mao X, Zhu H and Wang D 2013 J. Mater. Chem. A 1 1261
[24] Chang Y, Yu K, Zhang C X, Li R, Zhao P Y, Lou L L and Liu S X 2015 Appl. Catal. B 176 363
[25] Li T, Wei H, Jia H, Xia T, Guo X, Wang T and Zhu L 2019 ACS Sustain. Chem. Eng. 7 4177
[26] Tang C, Liu E, Fan J, Hu X, Ma Y and Wan J 2015 RSC Adv. 5 91979
[27] Tao R, Yang S, Shao C, Li X, Li X, Liu S, Zhang J and Liu Y 2019 ACS Appl. Nano Mater. 2 3081 DOI:
[28] Cai G F, Tu J P, Zhou D, Li L, Zhang J H, Wang X L and Gu C D 2014 CrystEngComm 16 6866
[29] Xu Y, Zheng L, Yang C, Liu X and Zhang J 2020 Sens. Actuators B 304 127237
[30] Yang X, Cui H, Li Y, Qin J, Zhang R and Tang H 2013 ACS Catal. 3 363
[31] Kolhe P S, Mutadak P, Maiti N and Sonawane K M 2020 Sens. Actuators A 304 111877
[32] Tsuruta A, Akamatsu T, Naito K, Hirai T, Murase S and Masuda Y 2021 ECS J. Solid. State. Sc. 10 121004
[33] Haridas V, A. Sukhananazerin, Mary Sneha J, Pullithadathil B and Narayanan B 2020 Appl. Surf. Sci. 517 146158
[34] Anusha, Antony A, Ani A, Poornesh P and Kulkarni S D 2021 Mater Sci. Semicond. Process 133 105967
[35] Li T T, Zhou P F, Zhao S K, Han C, Wei D Z and Shen Y B 2021 Vacuum 184 109936
[36] Takács M, Dücsö C and Pap A E 2015 Sens. Actuators B 221 281
[37] Deng J, Zhang R, Wang L, Lou Z and Zhang T 2015 Sens. Actuators B 209 449
[38] Jiang H, Zhao L, Gai L, Ma L, Ma Y and Li M 2013 CrystEngComm 15 7003
[39] Su P G and Yang L Y 2016 Sens. Actuators B 223 202
[40] Wang T, Sun Z, Huang D, Yang Z, Ji Q, Hu N, Yin G, He D, Wei H and Zhang Y 2017 Sens. Actuators B 252 284
[41] Shaikh S F, Ghule B G, Nakate U T, Shinde P V, Ekar S U, Dwyer C O, Kim K H and Mane R S 2018 Sci. Rep. 8 1106
[42] Yu Q, Jin R, Zhao L, Wang T, Liu F, Yan X, Wang C, Sun P and Lu G 2021 ACS Sens. 6 3451
[43] Li Z J, Lin Z J, Wang N N, Wang J Q, Liu W, Sun K, Fu Y Q and Wang Z G 2016 Sens. Actuators B 235 222
[44] Srirattanapibul S, Nakarungsee P, Issro C, Tang I M and Thongmee S 2021 Mater. Chem. Phys 272 125033
[1] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[2] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[3] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[4] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[5] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[6] Powder x-ray diffraction and Rietveld analysis of (C2H5NH3)2CuCl4
Yi Liu(刘义), Jun Shen(沈俊), Zunming Lu(卢遵铭), Baogen Shen(沈保根), and Liqin Yan(闫丽琴). Chin. Phys. B, 2021, 30(6): 067502.
[7] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[8] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[9] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[10] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[11] Analysis of highly efficient perovskite solar cells with inorganic hole transport material
I Kabir, S A Mahmood. Chin. Phys. B, 2019, 28(12): 128801.
[12] Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2
Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生). Chin. Phys. B, 2018, 27(9): 096101.
[13] Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well
Ling Sun(孙令), Lu Wang(王禄), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Jun Fang(方俊), Li-Li Xie(谢莉莉), Zhi-Biao Hao(郝智彪), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(4): 047209.
[14] Magnetocaloric effect in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Yinina Ma(马怡妮娜), Kun Zhai(翟昆), Liqin Yan(闫丽琴), Yisheng Chai(柴一晟), Dashan Shang(尚大山), Young Sun(孙阳). Chin. Phys. B, 2018, 27(2): 027501.
[15] 420 nm thick CH3NH3PbI3-xBrx capping layers for efficient TiO2 nanorod array perovskite solar cells
Long Li(李龙), Cheng-Wu Shi(史成武), Xin-Lian Deng(邓新莲), Yan-Qing Wang(王艳青), Guan-Nan Xiao(肖冠南), Ling-Ling Ni(倪玲玲). Chin. Phys. B, 2018, 27(1): 018804.
No Suggested Reading articles found!