Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 128101    DOI: 10.1088/1674-1056/ab50fe
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics

Jian-Ying Chen(陈建颖)1, Xin-Yuan Zhao(赵心愿)2, Lu Liu(刘璐)2, Jing-Ping Xu(徐静平)2
1 Ningbo Information Technology Service Center, Ningbo 315400, China;
2 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  NH3-plasma treatment is used to improve the quality of the gate dielectric and interface. Al2O3 is adopted as a buffer layer between HfO2 and MoS2 to decrease the interface-state density. Four groups of MOS capacitors and back-gate transistors with different gate dielectrics are fabricated and their C-V and I-V characteristics are compared. It is found that the Al2O3/HfO2 back-gate transistor with NH3-plasma treatment shows the best electrical performance:high on-off current ratio of 1.53×107, higher field-effect mobility of 26.51 cm2/V…, and lower subthreshold swing of 145 mV/dec. These are attributed to the improvements of the gate dielectric and interface qualities by the NH3-plasma treatment and the addition of Al2O3 as a buffer layer.
Keywords:  MoS2 transistor      high-k dielectric      NH3-plasma treatment      oxygen vacancy      mobility  
Received:  24 June 2019      Revised:  27 September 2019      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  81.65.-b (Surface treatments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61774064).
Corresponding Authors:  Jing-Ping Xu     E-mail:  jpxu@hust.edu.cn

Cite this article: 

Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平) Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics 2019 Chin. Phys. B 28 128101

[34] Yang Z Y, Liu X Q, Zou X M, Wang J L, Ma C, Jiang C Z, C Ho J, Pan C F, Xia X H, Xiong J and Liao L 2017 Adv. Funct. Mater. 27 1
[1] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[35] Song X J, Xu J P, Liu L, Lai P T and Tang W M 2019 Appl. Surf. Sci. 481 1
[2] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W and Chu J H 2015 Adv. Mater. 27 6575
[36] Xu J P, Wen W, Zhao X Y, Liu L, Song X J, Lai P T and Tang W M 2018 Nanotechnolgy 29 345201
[3] Mark K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 1
[37] Bhattacharjee S, Ganapathi K L, Nath D N and Navakanta B 2015 IEEE Trans. Electron. Devices 63 2556
[4] Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934
[5] Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, L Chin M, Li L J, Dubey M, Kong J and Palacios T 2012 Nano Lett. 12 4674
[6] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H J, Kim J H, Ryu S M and Im S 2012 Nano Lett. 12 3695
[7] Yonn Y, Ganapathi K and Salahuddin S 2011 Nano Lett. 11 3768
[8] Das S, Chen H Y, Penumatcha A V and Appenzeller J 2013 Nano Lett. 13 100
[9] Liu H, T Neal A and Ye P D 2012 ACS Nano 6 8563
[10] Chang H Y, Yang S X, Lee J H, Tao L, Hwang W S, Jena D D, Lu N S and Akinwande D J 2013 ACS Nano 7 5446
[11] Bertolazzi S, Kransnozhon D and Kis A 2013 ACS Nano 7 3246
[12] Lee H S, Min S W, Park M K, Lee Y T, Jeon P J, Kim J H, Ryu S M and Im S 2012 Small 8 3111
[13] Sanchez O L, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[14] Choi W, Cho M Y, Konar A, Lee J H, Cha G B, Hong S C, Kim S S, Kim J Y, Jena D D, Joo J S and Kim S K 2012 Adv. Mater. 24 5832
[15] Liu L T, Kumar S B, Ouyang Y J and Guo J 2011 IEEE Trans. Electron. Devices 58 3042
[16] Liu H and Ye P D 2012 IEEE Electron. Devices Lett. 33 546
[17] Illarionov Y Y, Smithe K K H, Waltl M, Knobloch T, Pop E and Grasser T 2017 IEEE Electron. Devices Lett. 38 1763
[18] Bolshakov P, Zhao P, Azcatl A, K Hurley P, M Wallace R and D Young C 2017 Appl. Phys. Lett. 111 032110
[19] Zou X, Xu J P, Huang H, Zhu Z Q, Wang H J, Li B R, Liao L and Fang G J 2018 Nanotechnology 29 245201
[20] Li X F, Xiong X, Li T Y, Li S C, Zhang Z F and Wu Y Q 2017 ACS Appl. Mater. Interfaces 9 44602
[21] Carrasco J, Lopez N and Illas F 2004 Phys. Rev. Lett. 93 225502
[22] Guha S and Narayanan V 2007 Phys. Rev. Lett. 98 196101
[23] Tse K, Liu D, Xiong K and Robertson J 2007 Microelectron Eng. 84 2028
[24] Park H B, Cho M, Park J, Hwang C S, Lee J C and Oh S J 2003 J. Appl. Phys. 94 1898
[25] Wen M, Xu J P, Liu L, Lai P T and Tang W M 2016 Appl. Phys. Express 9 095202
[26] Wen M, Xu J P, Lai P T and Tang W M 2017 IEEE Trans. Electron. Devices 64 1020
[27] Xu B, Xu J P, Liu L and Su Y 1975 Chin. Phys. Lett. 35 1
[28] Li C C, Shu K, Liao C, Fu C H, Hsieh T L, Chen L T, Liao Y L, Lu C C and Wang T K 2013 Microelectron Eng. 109 64
[29] Soares G V, Bastos K P, Pezzi R P, Miotti L, Driemeier C, Baumvol I J R, Hinkle C and Lucovsky G 2004 Appl. Phys. Lett. 84 4992
[30] Gavartin J L and Shluger A L 2005 J. Appl. Phys. 97 1
[31] Cho M H, Chung K B and Moon D W 2006 Appl. Phys. Lett. 89 182908
[32] Kazushi A and Makoto H 1990 Appl. Catal. 59 197
[33] Hagio T, Takase A and Umebayashi S 1992 J. Mater. Sci. Lett. 11 878
[34] Yang Z Y, Liu X Q, Zou X M, Wang J L, Ma C, Jiang C Z, C Ho J, Pan C F, Xia X H, Xiong J and Liao L 2017 Adv. Funct. Mater. 27 1
[35] Song X J, Xu J P, Liu L, Lai P T and Tang W M 2019 Appl. Surf. Sci. 481 1
[36] Xu J P, Wen W, Zhao X Y, Liu L, Song X J, Lai P T and Tang W M 2018 Nanotechnolgy 29 345201
[37] Bhattacharjee S, Ganapathi K L, Nath D N and Navakanta B 2015 IEEE Trans. Electron. Devices 63 2556
[1] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[4] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[5] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[6] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[7] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[8] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[9] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[10] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[11] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[12] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[13] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[14] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[15] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
No Suggested Reading articles found!