Special Issue:
SPECIAL TOPIC — Nanophotonics
|
|
|
Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2 |
Jinxiu Wen(温锦秀)1,4, Hao Wang(汪浩)1,3, Huanjun Chen(陈焕君)1,2, Shaozhi Deng(邓少芝)1,2, Ningsheng Xu(许宁生)1,2 |
1 State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China;
2 School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China;
3 School of Physics, Sun Yat-sen University, Guangzhou 510275, China;
4 School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China |
|
|
Abstract All-solid-state strong coupling systems with large vacuum Rabi splitting energy have great potential applications in future quantum information technologies, such as quantum manipulations, quantum information storage and processing, and ultrafast optical switches. Monolayer transition metal dichalcogenides (TMDs) have recently been explored as excellent candidates for the observation of solid-state strong coupling phenomena. In this work, from both experimental and theoretical aspects, we explored the strong coupling effect by integrating an individual plasmonic gold nanorod into the monolayer tungsten diselenide (WSe2). Evident anti-crossing behavior was observed from the coupled energy diagram at room temperature; a Rabi splitting energy of 98 meV was extracted.
|
Received: 16 April 2018
Revised: 23 May 2018
Accepted manuscript online:
|
PACS:
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
71.45.Gm
|
(Exchange, correlation, dielectric and magnetic response functions, plasmons)
|
|
61.46.Hk
|
(Nanocrystals)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51290271 and 11474364), the National Basic Research Program of China (Grant Nos. 2013CB933601 and 2013YQ12034506), the Natural Science Funds for Distinguished Young Scholars of Guangdong Province, China (Grant No. 2014A030306017), the Pearl River S & T Nova Program of Guangzhou, China (Grant No. 201610010084), and the Guangdong Special Support Program, China. |
Corresponding Authors:
Huanjun Chen, Shaozhi Deng
E-mail: chenhj8@mail.sysu.edu.cn;stsdsz@mail.sysu.edu.cn
|
Cite this article:
Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生) Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2 2018 Chin. Phys. B 27 096101
|
[1] |
Koenderink A F, Alú A and Polman A 2015 Science 348 516
|
[2] |
Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200
|
[3] |
Matsukevich D N and Kuzmich A 2004 Science 306 663
|
[4] |
Chen W, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H and Vuletić V 2013 Science 341 768
|
[5] |
Sanvitto D and Kéna-Cohen S 2016 Nat. Mater. 15 1061
|
[6] |
Hood C J, Lynn T W, Doherty A C, Parkins A S and Kimble H J 2000 Science 287 1447
|
[7] |
Reithmaier J R, Sȩk G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197
|
[8] |
Savona V, Andreani L C, Schwendimann P and Quattropani A 1995 Solid State Commun. 93 733
|
[9] |
Fofang N T, Park T H, Neumann O, Mirin N A, Nordlander P and Halas N J 2008 Nano Lett. 8 3481
|
[10] |
Zengin G, Wersäll M, Nilsson S, Antosiewicz T J, Käll M and Shegai T 2015 Phys. Rev. Lett. 114 157401
|
[11] |
Santhosh K, Bitton O, Chuntonov L and Haran G 2016 Nat. Commun. 7 11823
|
[12] |
Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J and Wang X H 2017 Phys. Rev. Lett. 118 237401
|
[13] |
Zhang H 2015 ACS Nano 9 9451
|
[14] |
Zhou K G and Zhang H L 2015 Small 11 3206
|
[15] |
Mak K F and Shan J 2016 Nat. Photon. 10 216
|
[16] |
Liu M, Zheng X U, Qi Y L, Liu H, Luo A Y, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Express 22 22841
|
[17] |
Luo Z Q, Wu D D, Xu B, Xu H Y, Cai Z P, Peng J, Weng J, Xu S, Zhu C H, Wang F Q, Sun Z P and Zhang H 2016 Nanoscale 8 1066
|
[18] |
Jiang Y Q, Miao L L, Jiang G B, Chen Y, Qi X, Jiang X F, Zhang H and Wen S C 2015 Sci. Rep. 5 16372
|
[19] |
Ye Z L, Cao T, Brien K O, Zhu H Y, Yin X B, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
|
[20] |
Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mats. 1 16055
|
[21] |
Dufferwiel S, Schwarz S, Withers F, Trichet A A P, Li F, Sich M, Del Pozo-Zamudio O, Clark C, Nalitov A, Solnyshkov D D, Malpuech G, Novoselov K S, Smith J M, Skolnick M S, Krizhanovskii D N and Tartakovskii A I 2015 Nat. Commun. 6 8579
|
[22] |
Liu X Z, Galfsky T, Sun Z, Xia F N, Lin E C, Lee Y H, Kéna-Cohen S and Menon V M 2015 Nat. Photon. 9 30
|
[23] |
Lundt N, Klembt S, Cherotchenko E, Betzold S, Iff O, Nalitov A V, Klaas M, Dietrich C P, Kavokin A V, Höfling S and Schneider C 2016 Nat. Commun. 7 13328
|
[24] |
Liu W J, Lee B, Naylor C H, Ee H S, Park J, Johnson A T and Agarwal R 2016 Nano Lett. 16 1262
|
[25] |
Wang S J, Li S L, Chervy T, Shalabney A, Azzini S, Orgiu E, Hutchison J A, Genet C, Samorí P and Ebbesen T W 2016 Nano Lett. 16 4368
|
[26] |
Wen J X, Wang H, Wang W L, Deng Z X, Zhuang C, Zhang Y, Liu F, She J C, Chen J, Chen H J, Deng S Z and Xu N S 2017 Nano Lett. 17 4689
|
[27] |
Zheng D, Zhang S P, Deng Q, Kang M, Nordlander P and Xu H X 2017 Nano Lett. 17 3809
|
[28] |
Gole A and Murphy C J 2004 Chem. Mater. 16 3633
|
[29] |
Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
|
[30] |
Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J and Heinz T F 2014 Phys. Rev. B 90 205422
|
[31] |
Huang X H, Neretina S and El-Sayed M A 2009 Adv. Mater. 21 4880
|
[32] |
Zhao W, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Kloc C, Tan P H and Eda G 2013 Nanoscale 5 9677
|
[33] |
Chen H J, Shao L, Ming T, Woo K C, Man Y C, Wang J F and Lin H Q 2011 ACS Nano 5 6754
|
[34] |
Chen H J, Sun Z H, Ni W H, Woo K C, Lin H Q, Sun L D, Yan C H and Wang J F 2009 Small 5 2111
|
[35] |
Ming T, Zhao L, Xiao M D and Wang J F 2010 Small 6 2514
|
[36] |
Wang H, Ke Y L, Xu N S, Zhan R Z, Zheng Z B, Wen J X, Yan J H, Liu P, Chen J, She J C, Zhang Y, Liu F, Chen H J and Deng S Z 2016 Nano Lett. 16 6886
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|