Special Issue:
SPECIAL TOPIC — New generation solar cells
|
SPECIAL TOPIC—New generation solar cells |
Prev
Next
|
|
|
420 nm thick CH3NH3PbI3-xBrx capping layers for efficient TiO2 nanorod array perovskite solar cells |
Long Li(李龙), Cheng-Wu Shi(史成武), Xin-Lian Deng(邓新莲), Yan-Qing Wang(王艳青), Guan-Nan Xiao(肖冠南), Ling-Ling Ni(倪玲玲) |
School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China |
|
|
Abstract The rutile TiO2 nanorod arrays with 240 nm in length, 30 nm in diameter, and 420 μm-2 in areal density were prepared by the hydrothermal method to replace the typical 200-300 nm thick mesoporous TiO2 thin films in perovskite solar cells. The CH3NH3PbI3-xBrx capping layers with different thicknesses were obtained on the TiO2 nanorod arrays using different concentration PbI2· DMSO complex precursor solutions in DMF and the photovoltaic performances of the corresponding solar cells were compared. The perovskite solar cells based on 240 nm long TiO2 nanorod arrays and 420 nm thick CH3NH3PbI3-xBrx capping layers showed the best photoelectric conversion efficiency (PCE) of 15.56% and the average PCE of 14.93±0.63% at the relative humidity of 50%-54% under the illumination of simulated AM 1.5 sunlight (100 mW· cm-2).
|
Received: 23 September 2017
Revised: 16 November 2017
Accepted manuscript online:
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
84.60.Jt
|
(Photoelectric conversion)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51472071 and 51272061) and Talent Project of Hefei University of Technology, China (Grant Nos. 75010-037004 and 75010-037003). |
Corresponding Authors:
Cheng-Wu Shi
E-mail: shicw506@foxmail.com,shicw506@hfut.edu.cn
|
Cite this article:
Long Li(李龙), Cheng-Wu Shi(史成武), Xin-Lian Deng(邓新莲), Yan-Qing Wang(王艳青), Guan-Nan Xiao(肖冠南), Ling-Ling Ni(倪玲玲) 420 nm thick CH3NH3PbI3-xBrx capping layers for efficient TiO2 nanorod array perovskite solar cells 2018 Chin. Phys. B 27 018804
|
[1] |
Yin W J, Shi T and Yan Y 2014 Adv. Mater. 26 4653
|
[2] |
Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
|
[3] |
Xiao J Y, Shi J J, Liu H B, Xu Y Z, Lv S T, Luo Y H, Li D M, Meng Q B and Li Y L 2015 Adv. Energy Mater. 5 1401943
|
[4] |
Lv S T, Han L Y, Xiao J Y, Zhu L F, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Li D M, Wang S R, Luo Y H, Meng Q B and Li X G 2014 Chem. Commun. 50 6931
|
[5] |
Liu P, Yang B, Liu G, Wu R, Zhang C, Wan F, Li S, Yang J, Gao Y and Zhou C 2017 Chin. Phys. B 26 058401
|
[6] |
Li J, Zhao C, Zhang H, Tong J, Zhang P, Yang C, Xia Y and Fan D 2016 Chin. Phys. B 25 028402
|
[7] |
Du H J, Wang W C and Gu Y F 2017 Chin. Phys. B 26 028803
|
[8] |
Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K and Zhang W 2014 J. Phys. Chem. Lett. 5 1511
|
[9] |
Kim H S and Park N G 2014 J. Phys. Chem. Lett. 5 2927
|
[10] |
Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S and Seok S I 2014 Nat. Mater. 13 897
|
[11] |
Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M and Park N G 2013 Nano Lett. 13 2412
|
[12] |
Li X, Dai S, Zhu P, Deng L, Xie S, Cui Q, Chen H, Wang N and Lin H 2016 ACS Appl. Mater. Inter. 8 21358
|
[13] |
Lu M, Shi C, Ma C, Li N, Li L and Xiao G 2017 J. Mater. Sci: Mater. Electron. 28 5603
|
[14] |
Xiao G, Shi C, Zhang Z, Li N and Li L 2017 J. Solid State Chem. 249 169
|
[15] |
Zhang Z, Shi C, Chen J, Xiao G and Li L 2017 Appl. Surf. Sci. 410 8
|
[16] |
Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476
|
[17] |
Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
|
[18] |
Chen J, Shi C, Zhang Z, Xiao G, Shao Z and Li N 2017 Acta Phys. -Chim. Sin. 33 2029
|
[19] |
Jo Y, Oh K S, Kim M, Kim K H, Lee H, Lee C W and Kim D S 2016 Adv. Mater. Interfaces 3 1500768
|
[20] |
Tu Y, Wu J, Lan Z, He X, Dong J, Jia J, Guo P, Lin J, Huang M and Huang Y 2017 Sci. Rep. 7 44603
|
[21] |
Zhang J, Shi C, Chen J, Wang Y and Li M 2016 J. Solid State Chem. 238 223
|
[22] |
Xu X, Zhang H, Shi J, Dong J, Luo Y, Li D and Meng Q 2015 J. Mater. Chem. A 3 19288
|
[23] |
Shi J J, Xu X, Li D M and Meng Q B 2015 Small 11 2472
|
[24] |
Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M and Meng Q B 2014 ACS Appl. Mater. Inter. 6 9711
|
[25] |
Liu C, Qiu Z, Meng W, Chen J, Qi J, Dong C and Wang M 2015 Nano Energy 12 59
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|