CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic ground state of plutonium dioxide: DFT+U calculations |
Yue-Fei Hou(侯跃飞)1, Wei Jiang(江伟)1, Shu-Jing Li(李淑静)2, Zhen-Guo Fu(付振国)1, and Ping Zhang(张平)1,3,† |
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 2 Beijing University of Chemical Technology, Beijing 100029, China; 3 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China |
|
|
Abstract The magnetic states of the strongly correlated system plutonium dioxide (PuO$_{2}$) are studied based on the density functional theory (DFT) plus Hubbard $U$ (DFT$ + U$) method with spin-orbit coupling (SOC) included. A series of typical magnetic structures including the multiple-$k$ types are simulated and compared in the aspect of atomic structure and total energy. We test LDA, PBE, and SCAN exchange-correlation functionals on PuO$_{2}$ and a longitudinal $3k$ antiferromagnetic (AFM) ground state is theoretically determined. This magnetic structure has been identified to be the most stable one by the former computational work using the hybrid functional. Our DFT$ + U$$ + $SOC calculations for the longitudinal $3k$ AFM ground state suggest a direct gap which is in good agreement with the experimental value. In addition, a genetic algorithm is employed and proved to be effective in predicting magnetic ground state of PuO$_{2}$. Finally, a comparison between the results of two extensively used DFT$ + U$ approaches to this system is made.
|
Received: 23 August 2022
Revised: 28 October 2022
Accepted manuscript online: 31 October 2022
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
75.10.Dg
|
(Crystal-field theory and spin Hamiltonians)
|
|
Fund: Project supported by National Natural Science Foundation of China, (Grant No. 12104034). |
Corresponding Authors:
Ping Zhang
E-mail: zhang_ping@iapcm.ac.cn
|
Cite this article:
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平) Magnetic ground state of plutonium dioxide: DFT+U calculations 2023 Chin. Phys. B 32 027103
|
[1] Haschke J M, Allen T H and Morales L A 2000 Science 287 285 [2] Santini P, Lémanski R and Erdös P 1999 Adv. Phys. 48 537 [3] Faber J and Lander G H 1976 Phys. Rev. B 14 1151 [4] Desgranges L, Ma Y, Garcia P, Baldinozzi G, Simeone D and Fischer H E 2017 Inorg. Chem. 56 321 [5] Blackburn E, Caciuffo R, Magnani N, Santini P, Brown P J, Enderle M and Lander G H 2005 Phys. Rev. B 72 184411 [6] Wilkins S B, Paixão J A, Caciuffo R, Javorsky P, Wastin F, Rebizant J, Detlefs C, Bernhoeft N, Santini P and Lander G H 2004 Phys. Rev. B 70 214402 [7] Tokunaga Y, Homma Y, Kambe S, Aoki D, Sakai H, Yamamoto E, Nakamura A, Shiokawa Y, Walstedt R E and Yasuoka H 2005 Phys. Rev. Lett. 94 137209 [8] Santini P, Carretta S, Magnani N, Amoretti G and Caciuffo R 2006 Phys. Rev. Lett. 97 207203 [9] Tokunaga Y, Aoki D, Homma Y, Kambe S, Sakai H, Ikeda S, Fujimoto T, Walstedt R E, Yasuoka H, Yamamoto E, Nakamura A and Shiokawa Y 2006 Phys. Rev. Lett. 97 257601 [10] Arrott A and Goldman J E 1957 Phys. Rev. 108 948 [11] Ross J W and Lam D J 1967 J. Appl. Phys. 38 1451 [12] Raphael G and Lallement R 1968 Solid State Commun. 6 383 [13] Yasuoka H, Koutroulakis G, Chudo H, Richmond S, Veirs D K, Smith A I, Bauer E D, Thompson J D, Jarvinen G D and Clark D L 2012 Science 33 6083 [14] Tokunaga Y, Sakai H, Fujimoto T, Kambe S, Walstedt R E, Ikushima K, Yasuoka H, Aoki D, Homma Y, Haga Y, Matsuda T D, Ikeda S, Yamamoto E, Nakamura A, Shiokawa Y, Nakajima K, Arai Y and Onuki Y 2007 J. Alloys Compd. 444-445 241 [15] Martel L, Magnani N, Vigier J F, Boshoven J, Selfslag C, Farnan I, Griveau J C, Somers J and Fanghanel T 2014 Inorg. Chem. 53 6928 [16] Kern S, Robinson R A, Nakotte H, Lander G H, Cort B, Watson P and Vigil F A 1999 Phys. Rev. B 59 104 [17] Colarieti-Tosti M, Eriksson O, Nordström L, Wills J and Brooks M S S 2002 Phys. Rev. B 65 195102 [18] Shick A B, Koloren J, Havela L, Gouder T and Caciuffo R 2014 Phys. Rev. B 89 041109 [19] Gendron F and Autschbach J 2017 J. Phys. Chem. Lett. 8 673 [20] Pegg J T, Shields A E, Storr M T, Wills A S, Scanlon D O and de Leeuw N H 2019 Phys. Chem. Chem. Phys. 20 20943 [21] Noe M and Fuger J 1974 Inorg. Nucl. Chem. Lett. 10 7 [22] Ansoborlo E, Prat O, Moisy P, Auwer C D, Guilbaud P, Carriere M, Gouget B, Duffield J, Doizi D, Vercouter T, Moulin C and Moulin V 2006 Biochimie 88 1605 [23] Tokunaga Y, Sakai H, Fujimoto T, Kambe S, Walstedt R E, Ikushima K, Yasuoka H, Aoki D, Homma Y, Haga Y, Matsuda T D, Ikeda S, Yamamoto E, Nakamura A, Shiokawa Y, Nakajima K, Arai Y and Ōnuki Y 2007 J. Alloys Compd. 444-445 241 [24] Zhang P, Wang B T and Zhao X G 2010 Phys. Rev. B 82 144110 [25] Prodan I D and Scuseria G E 2005 J. Chem. Phys. 123 014703 [26] Sun B, Zhang P and Zhao X G 2008 J. Chem. Phys. 128 084705 [27] Jomard G, Amadon B, Bottin F and Torrent M 2008 Phys. Fev. B 78 075125 [28] Jollet F, Jomard G and Amadon B 2009 Phys. Rev. B 80 235109 [29] Shi H L, Chu M F and Zhang P 2010 J. Nucl. Mater. 400 151 [30] Wang B T, Zheng J J, Qu X, Li W D and Zhang P 2015 J. Alloys Compd. 628 267 [31] Minamoto S, Kato M, Konashi K and Kawazoe Y 2009 J. Nucl. Mater. 385 18 [32] Sun B, Liu H F, Song H F, Zhang G C, Zheng H, Zhao X G and Zhang P 2012 J. Nucl. Mater. 426 139 [33] Moten S A, Atta-Fynn R, Ray A K and Huda M N 2016 J. Nucl. Mater. 468 37 [34] Jomard G and Bottin F 2011 Phys. Rev. B 84 195469 [35] Nakamura H, Machida M and Kato M 2010 Phys. Rev. B 82 155131 [36] Suzuki M T, Magnani N and Oppeneer P M 2013 Phys. Rev. B 88 195146 [37] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [38] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533 [39] Sun J W, Ruzsinszky A and Perdew J P 2015 Phys. Rev. Lett. 115 036402 [40] Perdew J P, Ruzsinszky A, Tao J, Staroverov V N, Scuseria G E and Csonka G I 2005 J. Chem. Phys. 123 062201 [41] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [42] Blöchl P E 1994 Phys. Rev. B 50 17953 [43] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [44] Blöchl P E, Först C J and Schimpl J B 2003 Bull. Mater. Sci. 26 33 [45] Morée J B, Outerovitch R and Amadon B 2021 Phys. Rev. B 103 045113 [46] Liechtenstein A I, Anisimov V V and Zaanen J 1995 Phys. Rev. B 52 R5467 [47] Neilson W D, Pegg J T, Steele H and Murphy S T 2021 Phys. Chem. Chem. Phys. 23 4544 [48] Jansen H J F 1999 Phys. Rev. B 59 4699 [49] Zheng F W and Zhang P 2021 Compt. Phys. Commun. 259 107659 [50] Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299 [51] McCleskey T M, Bauer E, Jia Q, Burrell A K, Scott B L, Conradson S D, Mueller A, Roy L, Wen X D, Scuseria G E and Martin R L 2013 J. Phys. Appl. 113 013515 [52] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [53] Dudarev S L, Liu P, Andersson D A, Stanek C R, Ozaki T and Franchini C 2019 Phys. Rev. Mater. 3 083802 [54] Yamashita T, Nitani N, Tsuji T and Inagaki H 1997 J. Nucl. Mater. 245 72 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|