Abstract Exploring the novel structural phase of van der Waals (vdW) magnets would promote the development of spintronics. Here, through first-principles calculations, we report a novel monoclinic structure of vdW layered 1T-CrTe2, which is one of the popular vdW magnets normally exhibiting a trigonal structure. The new monoclinic phase emerges from a switchable magnetic state between ferromagnetism and antiferromagnetism through changing hole doping concentration, which suggests a practical approach to obtain such a structure. The results of phonon dispersion and energy analysis convince us that the monoclinic structure is a metastable phase even without hole doping. When the hole doping concentration increases, the stability analysis indicates the preference for a novel monoclinic phase rather than a conventional trigonal phase, and meanwhile, the magnetic properties are accordingly tuned. This work provides new insights into the phase engineering of the chalcogenide family and the electrical control of magnetism of vdW layered magnets.
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403200), the National Natural Science Foundation of China (Grant No. 11774429), the NSAF (Grant No. U1830206), and the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2021RC4026).
Corresponding Authors:
Xiaoxiang Yu, Jiayu Dai
E-mail: xxyu@nudt.edu.cn;jydai@nudt.edu.cn
Cite this article:
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰) A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2 2023 Chin. Phys. B 32 027201
[1] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol.14 408 [2] Jiang X, Liu Q X, Xing J P, Liu N S, Guo Y, Liu Z F and Zhao J J 2021 Appl. Phys. Rev.8 031305 [3] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature546 270 [4] Fei Z Y, Huang B, Malinowski P, Wang W, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W, Cobden D H, Chu J H and Xu X D 2018 Nat. Mater.17 778 [5] Chen X, Lin Z Z and Cheng L R 2021 Chin. Phys. B30 047502 [6] Li B, Deng X, Shu W, et al. 2022 Mater. Today57 66 [7] Wang H D, Lei P H, Mao X Y, Kong X, Ye X Y, Wang P F, Wang Y, Qin X, Meijer J, Zeng H L, Shi F Z and Du J F 2022 Chin. Phys. Lett.39 047601 [8] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature546 265 [9] Jiang S W, Li L Z, Wang Z F, Mak K F and Shan J 2018 Nat. Nanotechnol.13 549 [10] Lai X B, Wang Y H, Shi X L, Li D Y, Liu B Y, Wang R M and Zhang L W 2016 Chin. Phys. Lett.33 067202 [11] Zhao G, Cheng X M, Jun T H, Du B Q and Liang X Y 2011 Chin. Phys. Lett.28 127203 [12] Liu B, Liu S S, Yang L, Chen Z D, Zhang E, Li Z, Wu J, Ruan X Z, Xiu F X, Liu W Q, He L, Zhang R and Xu Y B 2020 Phys. Rev. Lett.125 267205 [13] Kobayashi S, Katayama N, Manjo T, Ueda H, Michioka C, Sugiyama J, Sassa Y, Forslund O K, Mansson M, Yoshimura K and Sawa H 2019 Inorg. Chem.58 14304 [14] Sun X N, Qu Z M, Wang Q G, Yuan Y and Liu S H 2019 Acta Phys. Sin.68 107201 (in Chinese) [15] Yu Y, Zhang W J, Zhao W Y, Lin X, Jin Z M, Liu W M and Ma G H 2019 Acta Phys. Sin.68 017201 (in Chinese) [16] Vishkayi S I, Torbatian Z, Qaiumzadeh A and Asgari R 2020 Phys. Rev. Mater.4 094004 [17] Cheng K Q, Zhou B J, Wang C X, Zou S, Pan Y P, He X B, Zhang J, Lu F J, Wang L, Shi Y G and Luo Y K 2022 Chin. Phys. B31 67104 [18] Zhang L, He D W, He J Q, Fu Y and Wang Y S 2019 Chin. Phys. B28 087201 [19] Xie W Q, Lu Z W, He C C, Yang X B and Zhao Y J 2021 J. Phys.: Condens. Matter33 215803 [20] Zhou J, Song X H, Chai J W, Wong N L M, Xu X G, Jiang Y, Feng Y P, Yang M and Wang S J 2022 J. Alloys Compd.893 162223 [21] Pan L F, Wen H Y, Huang L, Chen L, Deng H X, Xia J B and Wei Z M 2019 Chin. Phys. B28 107504 [22] Sun X D, Li W Y, Wang X, et al. 2020 Nano Res.13 3358 [23] Lv H Y, Lu W J, Shao D F, Liu Y and Sun Y P 2015 Phys. Rev. B92 214419 [24] Li Q Q, Li S, Wu D, Ding Z K, Cao X H, Huang L, Pan H, Li B, Chen K Q and Duan X D 2021 Appl. Phys. Lett.119 162402 [25] Lukoschus K, Kraschinski S, Näther C, Bensch W and Kremer R K 2004 J. Solid State Chem.177 951 [26] Tang B, Wang X, Han M, Xu X, Zhang Z, Zhu C, Cao X, Yang Y, Fu Q, Yang J, Li X, Gao W, Zhou J, Lin J and Liu Z 2022 Nat. Electron.5 224 [27] Wang Y, Xiao J, Zhu H Y, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S Q, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature550 487 [28] Verzhbitskiy I A, Kurebayashi H, Cheng H X, Zhou J, Khan S, Feng Y P and Eda G 2020 Nat. Electron.3 460 [29] Feng H L, Li Y, Shi Y G, Xie H Y, Li Y Q and Xu Y 2022 Chin. Phys. Lett.39 077501 [30] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864 [31] Dai J Y, Yuan J M and Giannozzi P 2009 Appl. Phys. Lett.95 232105 [32] Lin C J, Zheng F and Zhu Z Z 2019 Acta Phys. Sin.68 157201 (in Chinese) [33] Kresse G and Hafner J 1993 Phys. Rev. B47 558 [34] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [35] Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys.105 9982 [36] Klimeš J, Bowler D R and Michaelides A 2009 J. Phys.: Condens. Matter22 022201 [37] Zeng F, Zhang W B and Tang B Y 2015 Chin. Phys. B24 097103 [38] Freitas D C, Weht R, Sulpice A, Remenyi G, Strobel P, Gay F, Marcus J and Nunez-Regueiro M 2015 J. Phys.: Condens. Matter27 176002 [39] Togo A and Tanaka I 2015 Scr. Mater.108 1 [40] Cao Y F, Cai K M, Li L J, Lu W J, Sun Y P and Wang K Y 2014 Chin. Phys. Lett.31 077203 [41] Cao T, Li Z L and Louie S G 2015 Phys. Rev. Lett.114 236602 [42] Fan G Z, Chen R Y, Wang N L and Luo J L 2015 Chin. Phys. Lett.32 077203 [43] Ye J T, Craciun M F, Koshino M, Russo S, Inoue S, Yuan H T, Shimotani H, Morpurgo A F and Iwasa Y 2011 Proc. Natl. Acad. Sci. USA108 13002 [44] Efetov D K and Kim P 2010 Phys. Rev. Lett.105 256805 [45] Li Y, Duerloo K A N, Wauson K and Reed E J 2016 Nat. Commun.7 10671 [46] Wu B Z, Cai X X, Shui L Q, Gao E and Liu Z 2021 J. Phys. Chem. C125 1060 [47] Zhang Q, Yu X X, Zeng Q Y, Zhang H Y, Zhang S, Gao C, Kang D D, Wu J H and Dai J Y 2022 Front. Phys.10 838568 [48] Aseginolaza U, Bianco R, Monacelli L, Paulatto L, Calandra M, Mauri F, Bergara A and Errea I 2019 Phys. Rev. Lett.122 075901 [49] Guan M X, Liu X B, Chen D Q, Li X Y, Qi Y P, Yang Q, You P W and Meng S 2022 Phys. Rev. Lett.128 015702 [50] Kohn W 1959 Phys. Rev. Lett.2 393 [51] Stollhoff G, Oleś A M and Heine V 1990 Phys. Rev. B41 7028
Influences of P doping on magnetic phase transition and structure in MnCoSi ribbon Du Qian-Heng (杜乾衡), Chen Guo-Fu (陈国富), Yang Wen-Yun (杨文云), Hua Mu-Xin (华慕欣), Du Hong-Lin (杜红林), Wang Chang-Sheng (王常生), Liu Shun-Quan (刘顺荃), Han Jing-Zhi (韩景智), Zhou Dong (周栋), Zhang Yan (张焱), Yang Jin-Bo (杨金波). Chin. Phys. B, 2015, 24(6): 067502.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.