Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040308    DOI: 10.1088/1674-1056/acbd2b
GENERAL Prev   Next  

Quantum speed limit of a single atom in a squeezed optical cavity mode

Ya-Jie Ma(马雅洁)1, Xue-Chen Gao(高雪晨)1, Shao-Xiong Wu(武少雄)1,†, and Chang-Shui Yu(于长水)2,‡
1 School of Semiconduct and Physics, North University of China, Taiyuan 030051, China;
2 School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator. The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium, and the effective Hamiltonian can be obtained under the Bogoliubov squeezing transformation. The analytical expression of the evolved atom state can be obtained by using the non-Hermitian Schrödinger equation for the initial excited state, and the quantum speed limit time coincides very well for both the analytical expression and the master equation method. From the perspective of quantum speed limit, it is more conducive to accelerate the evolution of the quantum state for the large detuning, strong driving, and coupling strength. For the case of the initial superposition state, the form of the initial state has more influence on the evolution speed. The quantum speed limit time is not only dependent on the system parameters but also determined by the initial state.
Keywords:  quantum speed limit      squeezing mode      non-Hermitian Schrödinger equation      master equation  
Received:  23 October 2022      Revised:  17 February 2023      Accepted manuscript online:  18 February 2023
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175029) and the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302123063).
Corresponding Authors:  Shao-Xiong Wu, Chang-Shui Yu     E-mail:  sxwu@nuc.edu.cn;ycs@dlut.edu.cn

Cite this article: 

Ya-Jie Ma(马雅洁), Xue-Chen Gao(高雪晨), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水) Quantum speed limit of a single atom in a squeezed optical cavity mode 2023 Chin. Phys. B 32 040308

[1] Mandelstam L and Tamm I 1945 J. Phys. (USSR) 9 249
[2] Margolus N and Levitin L B 1998 Physica D 120 188
[3] Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 65 1697
[4] Fleming G N 1973 Nuovo Cimento 16 232
[5] Bhattacharyya K 1983 J. Phys. A: Math. Gen. 16 2993
[6] Vaidman L 1992 Am. J. Phys. 60 182
[7] Caneva T, Murphy M, Calarco T, Fazio R, Montangero S, Giovannetti V and Santoro G E 2009 Phys. Rev. Lett. 103 240501
[8] Hegerfeldt G C 2013 Phys. Rev. Lett. 111 260501
[9] Campbell S and Deffner S 2017 Phys. Rev. Lett. 118 100601
[10] van Frank S, Bonneau M, Schmiedmayer J, Hild S, Gross C, Cheneau M, Bloch I, Pichler T, Negretti A, Calarco T and Montangero S 2016 Sci. Rep. 6 34187
[11] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[12] Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[13] Deffner S and Lutz E 2010 Phys. Rev. Lett. 105 170402
[14] Greiner M, Mandel O, Esslinger T, H?nsch T W and Bloch I 2002 Nature 415 39
[15] Sachdev S 2011 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[16] Deffner S and Campbell S 2017 J. Phys. A: Math. Theor. 50 453001
[17] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
[18] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402
[19] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[20] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2014 Sci. Rep. 4 4890
[21] Xu Z Y, Luo S L, Yang W L, Liu C and Zhu S Q 2014 Phys. Rev. A 89 012307
[22] Wu S X and Yu C S 2018 Phys. Rev. A 98 042132
[23] Wu S X and Yu C S 2020 Sci. Rep. 10 5500
[24] Zhang L, Sun Y and Luo S L 2018 Phys. Lett. A 382 2599
[25] Sun Z, Liu J, Ma J and Wang X 2015 Sci. Rep. 5 8444
[26] Liu H B, Yang W L, An J H and Xu Z Y 2016 Phys. Rev. A 93 020105
[27] Song Y J, Kuang L M and Tan Q S 2016 Quantum Inf. Process. 15 2325
[28] Wei Y B, Zou J, Wang Z M, Shao B and Li H 2016 Phys. Lett. A 380 397
[29] Cai X J and Zheng Y J 2017 Phys. Rev. A 95 052104
[30] Huang J H, Qin L G, Chen G L, Hu L Y and Liu F Y 2022 Chin. Phys. B 31 110307
[31] Lin Z Y, liu T, Li Z L, Zhang Y H and Lan K 2022 Chin. Phys. B 31 070307
[32] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
[33] Xu K, Zhang G F and Liu W M 2019 Phys. Rev. A 100 052305
[34] Yu M, Fang M F and Zou H M 2018 Chin. Phys. B 27 010303
[35] O’Connor E, Guarnieri G and Campbell S 2021 Phys. Rev. A 103 022210
[36] Mondal D, Datta C and Sazim S 2016 Phys. Lett. A 380 689
[37] Jones P J and Kok P 2010 Phys. Rev. A 82 022107
[38] Uzdin R and Kosloff R 2016 Europhys. Lett. 115 40003
[39] Teittinen J, Lyyra H and Maniscalco S 2019 New J. Phys. 21 123041
[40] Ektesabi A, Behzadi N and Faizi E 2017 Phys. Rev. A 95 022115
[41] Deffner S 2017 New J. Phys. 19 103018
[42] Diaz V A A, Martikyan V, Glaser S J and Sugny D 2020 Phys. Rev. A 102 033104
[43] Burgarth D, Borggaard J and Zimboras Z 2022 Phys. Rev. A 105 042402
[44] Cheng W W, Li B, Gong L Y and Zhao S M 2022 Physica A 597 127242
[45] Mohan B, Das S and Pati A K 2022 New J. Phys. 24 065003
[46] Ness G, Alberti A and Sagi Y 2022 Phys. Rev. Lett. 129 140403
[47] Liu X, Wu W and Wang C 2017 Phys. Rev. A 95 052118
[48] Funo K, Shiraishi N and Saito K 2019 New J. Phys. 21 013006
[49] Hu X H, Sun S N and Zheng Y J 2020 Phys. Rev. A 101 042107
[50] Vu T V and Hasegawa Y 2021 Phys. Rev. Lett. 127 190601
[51] Liu C, Xu Z Y and Zhu S Q 2015 Phys. Rev. A 91 022102
[52] Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502
[53] Campaioli F, Pollock F A, Binder F C and Modi K 2018 Phys. Rev. Lett. 120 060409
[54] Wu S X, Zhang Y, Yu C S and Song H S 2015 J. Phys. A: Math. Theor. 48 045301
[55] Mirkin N, Toscano F and Wisniacki D A 2016 Phys. Rev. A 94 052125
[56] Marvian I, Spekkens R W and Zanardi P 2016 Phys. Rev. A 93 052331
[57] Poggi P M 2019 Phys. Rev. A 99 042116
[58] Du K Y, Ma Y J, Wu S X and Yu C S 2021 Chin. Phys. B 30 090308
[59] Tian C, Lu X, Zhang Y J and Xia Y J 2019 Acta Phys. Sin. 68 150301 (in Chinese)
[60] Shiraishi N, Funo K and Saito K 2018 Phys. Rev. Lett. 121 070601
[61] Okuyama M and Ohzeki M 2018 Phys. Rev. Lett. 120 070402
[62] Shanahan B, Chenu A, Margolus N and del Campo A 2018 Phys. Rev. Lett. 120 070401
[63] Wu S X and Yu C S 2020 Chin. Phys. B 29 050302
[64] Garcia-Pintos L P, Nicholson S B, Green J R, del Campo A and Gorshkov A V 2022 Phys. Rev. X 12 011038
[65] Liu J, Miao Z B, Fu L B and Wang X G 2021 Phys. Rev. A 104 052432
[66] Shao Y Y, Liu B, Zhang M, Yuan H D and Liu J 2020 Phys. Rev. Res. 2 023299
[67] Sun S N and Zheng Y J 2019 Phys. Rev. Lett. 123 180403
[68] Sun S N, Peng Y G, Hu X H and Zheng Y J 2021 Phys. Rev. Lett. 127 100404
[69] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[70] Purcell E M 1946 Phys. Rev. 69 681
[71] Bloembergen N and Pound R V 1954 Phys. Rev. 95 8
[72] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87
[73] Hamsen C, Tolazzi K N, Wilk T and Rempe G 2017 Phys. Rev. Lett. 118 133604
[74] Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P and Zhang T C 2019 Phys. Rev. Lett. 123 233604
[75] Yang P F, Li M, Han X, He H, Li G, Zou C L, Zhang P F and Zhang T C 2019 arXiv: 1911.10300
[76] Lu X Y, Wu Y, Johansson J R, Jing H, Zhang J and Nori F 2015 Phys. Rev. Lett. 114 093602
[77] Qin W, Miranowicz A, Li P B, Lu X Y, You J Q and Nori F 2018 Phys. Rev. Lett. 120 093601
[78] Wang Y, Li C, Sampuli E M, Song J, Jiang Y Y and Xia Y 2019 Phy. Rev. A 99 023833
[79] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603
[80] Serikawa T, Yoshikawa J, Makino K and Frusawa A 2016 Opt. Express 24 28383
[81] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (New York: Oxford University Press)
[1] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[2] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[3] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[4] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[5] Coherent-driving-assisted quantum speedup in Markovian channels
Xiang Lu(鹿翔), Ying-Jie Zhang(张英杰), and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(2): 020301.
[6] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[7] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[8] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[9] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[10] On the time-independent Hamiltonian in real-time and imaginary-time quantum annealing
Jie Sun(孙杰)† and Songfeng Lu(路松峰)‡. Chin. Phys. B, 2020, 29(10): 100303.
[11] Dynamical evolution of photon-added thermal state in thermal reservoir
Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春). Chin. Phys. B, 2019, 28(11): 110301.
[12] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[13] Quantum speed limit time of a two-level atom under different quantum feedback control
Min Yu(余敏), Mao-Fa Fang(方卯发), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(1): 010303.
[14] Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁). Chin. Phys. B, 2018, 27(1): 010302.
[15] Quantum speed limits of a qubit system interacting with a nonequilibrium environment
Zhi He(贺志), Chun-Mei Yao(姚春梅), Li Li(李莉), Qiong Wang(王琼). Chin. Phys. B, 2016, 25(8): 080304.
No Suggested Reading articles found!