|
|
Interaction solutions for the second extended (3+1)-dimensional Jimbo-Miwa equation |
Hongcai Ma(马红彩)†, Xue Mao(毛雪)‡, and Aiping Deng(邓爱平) |
Department of Applied Mathematics, Donghua University, Shanghai 201620, China |
|
|
Abstract Based on the Hirota bilinear method, the second extended (3+1)-dimensional Jimbo-Miwa equation is established. By Maple symbolic calculation, lump and lump-kink soliton solutions are obtained. The interaction solutions between the lump and multi-kink soliton, and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions. Furthermore, periodic-lump wave solution is derived via the ansatz including hyperbolic and trigonometric functions. Finally, 3D plots, 2D curves, density plots, and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.
|
Received: 08 December 2022
Revised: 16 January 2023
Accepted manuscript online: 06 February 2023
|
PACS:
|
02.30.Jr
|
(Partial differential equations)
|
|
02.70.Wz
|
(Symbolic computation (computer algebra))
|
|
04.20.Jb
|
(Exact solutions)
|
|
04.30.Nk
|
(Wave propagation and interactions)
|
|
Corresponding Authors:
Hongcai Ma, Xue Mao
E-mail: hongcaima@hotmail.com;maoxue990420@163.com
|
Cite this article:
Hongcai Ma(马红彩), Xue Mao(毛雪), and Aiping Deng(邓爱平) Interaction solutions for the second extended (3+1)-dimensional Jimbo-Miwa equation 2023 Chin. Phys. B 32 060201
|
[1] Li J H and Li B2022 Chaos Solitons Fractals 164 112712 [2] Li J H, Chen J C and Li B2022 Nonlinear Dyn. 107 781 [3] Ma H C, Ni K, Ruan G D and Deng A P2016 Therm. Sci. 20 875 [4] Hosseini K, Mirzazadeh M, Aligoli M, Eslami M and Liu J G2020 Math. Model. Nat. Phenom. 15 61 [5] Zhou J, Zhou R and Zhu S2020 Chaos Solitons Fractals 141 110419 [6] Peng W Q, Tian S F, Zhang T T and Fang Y2019 Math. Methods Appl. Sci. 42 6865 [7] Lou, S Y2020 Chin. Phys. B 29 080502 [8] Ma H C, Ge D J and Yu Y D2008 Chin. Phys. B 17 4344 [9] Yu Y and Ma H C 2010 Appl. Math. Comput. 215 3534 [10] Ma W X2016 Int. J. Nonlinear Sci. Numer. Simul. 17 355 [11] Guo H D, Xia T C and Hu B B2020 Nonlinear Dyn. 100 601 [12] Ma H C, Bai Y Q and Deng A P2020 Math. Methods Appl. Sci. 43 7135 [13] Ma H C, Yue S P and Deng A P2022 Mod. Phys. Lett. B 36 2250069 [14] Yamaleev R M2014 Indian J. Pure Appl. Math. 45 165 [15] Alquran M and Al-Omary R 2012 Int. J. Nonlinear Sci. 14 150 [16] Manakov S V, Zakharov V E, Bordag L A, Its A R and Matveev V B1977 Phys. Lett. A 63 205 [17] Ma H C and Deng A P2016 Commun. Theor. Phys. 65 546 [18] Gilson C R and Nimmo J J C1990 Phys. Lett. A 147 472 [19] Yang J Y and Ma W X2016 Int. J. Mod. Phys. B 30 1640028 [20] Guo D, Tian S F, Wang X B and Zhang T T2019 East Asian J. Appl. Math. 9 780 [21] Imai K1997 Prog. Theor. Phys. 98 1013 [22] Imai K and Nozaki K1996 Prog. Theor. Phys. 96 521 [23] Zhang Y, Dong H, Zhang X and Yang H2017 Comput. Math. Appl. 73 246 [24] Ma H C, Ni K and Deng A2017 Therm. Sci. 21 1765 [25] Gu J, Zhang Y and Dong H2018 Comput. Math. with Appl. 76 1408 [26] Wazwaz A M 2021 Int. J. Numer. Methods H 32 138 [27] Yusuf A and Sulaiman T A2021 Commun. Nonlinear Sci. Numer. Simul. 99 105846 [28] Chen M D, Li X, Wang Y and Li B2017 Commun. Theor. Phys. 67 595 [29] Dai Z D, Lin S Q, Fu H M and Zeng X P 2010 Appl. Math. Comput. 216 1599 [30] Liu J G, Du J Q, Zeng Z F and Nie B2017 Nonlinear Dyn. 88 655 [31] Fang T and Wang Y H2018 Comput. Math. with Appl. 76 1476 [32] Liu J G, Wazwaz A M and Zhu W H 2022 J. Appl. Anal. Comput. 12 517 [33] Wang C J, Dai Z D and Liu C F2016 Mediterr. J. Math. 13 1087 [34] Zhang Z, Yang X and Li B2020 Nonlinear Dyn. 100 1551 [35] Ma H C, Gao Y D and Deng A P2022 Nonlinear Dyn. 108 4123 [36] Dorizzi B, Grammaticos B, Ramani A and Winternitz P1986 J. Math. Phys. 27 2848 [37] Jimbo M and Miwa T1983 Publ. RRIMS Kyoto Univ. 19 943 [38] Wazwaz A M2017 Appl. Math. Lett. 64 21 [39] Sun H Q and Chen A H2017 Appl. Math. Lett. 68 55 [40] Manafian J2018 Comput. Math. with Appl. 76 1246 [41] Ali K K, Nuruddeen R I and Hadhoud A R2018 Results Phys. 9 12 [42] Li H and Li Y Z2018 Appl. Math. Comput. 333 369 [43] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|