Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070302    DOI: 10.1088/1674-1056/acac0e
GENERAL Prev   Next  

Quantum homomorphic broadcast multi-signature based on homomorphic aggregation

Xin Xu(徐鑫) and Ai-Han Yin(殷爱菡)
Department of Information Engineering, East China JiaoTong University, Nanchang 330013, China
Abstract  Quantum multi-signature has attracted extensive attention since it was put forward. Beside its own improvement, related research is often combined with other quantum signature. However, this type of quantum signature has one thing in common, that is, the generation and verification of signature depend heavily on the shared classical secret key. In order to increase the reliability of signature, the homomorphic aggregation technique is applied to quantum multi-signature, and then we propose a quantum homomorphic multi-signature protocol. Unlike previous quantum multi-signature protocols, this protocol utilizes homomorphic properties to complete signature generation and verification. In the signature generation phase, entanglement swapping is introduced, so that the individual signatures of multiple users are aggregated into a new multi-signature. The original quantum state is signed by the shared secret key to realize the verification of the signature in the verification phase. The signature process satisfies the homomorphic property, which can improve the reliability of the signature.
Keywords:  quantum signature      homomorphic aggregation      homomorphic multi-signature      Bell state  
Received:  23 September 2022      Revised:  03 December 2022      Accepted manuscript online:  16 December 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Bg (Entanglement production and manipulation)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61762039).
Corresponding Authors:  Ai-Han Yin     E-mail:  yinaihan@126.com

Cite this article: 

Xin Xu(徐鑫) and Ai-Han Yin(殷爱菡) Quantum homomorphic broadcast multi-signature based on homomorphic aggregation 2023 Chin. Phys. B 32 070302

[1] Shor P W 1994 Proceedings of 35th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA (1994) 124-134
[2] Bennett C H, Brassard G 1984 Theoretical Computer Science 560 7
[3] Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Fan Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C and Han Z F 2022 Nat. Photon. 16 154
[4] Fan Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C and Han Z F 2021 Photon. Res. 9 1881
[5] Fan Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Chen W, Zhou Z, Wang Z H, Teng J, Guo G C and Han Z F 2022 Optica 9 812
[6] Yin H L, Fu Y and Chen Z B 2016 Phys. Rev. A 93 032316
[7] Yin H L, Fu Y, Liu H, Tang Q J, Wang J, You L X, Zhang W J, Chen S J, Wang Z, Zhang Q, Chen T Y, Chen Z B and Pan J W 2017 Phys. Rev. A 95 032334
[8] Yin H L, Wang W L, Tang Y L, Zhao Q, Liu H, Sun X X, Zhang W J, Li H, Puthoor I V, You L X, Andersson E, Wang Z, Liu Y, Jiang X, Ma X F, Zhang Q, Curty M, Chen T Y and Pan J W 2017 Phys. Rev. A 95 042338
[9] Lu Y S, Cao X Y, Weng C X, Gu J, Xie Y M, Zhou M G, Yin H L and Chen Z B 2021 Opt. Express 29 10162
[10] Weng C X, Lu Y S, Gao R Q, Xie Y M, Gu J, Li C L, Li B H, Yin H L and Chen Z B 2021 Opt. Express 29 27661
[11] Yin H L, Fu Y, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S and Chen Z B 2023 National Science Review 10 nwac228
[12] Cai Z Y, Liu S, Han Z Y, Wang R and Huang Y H 2021 Entropy 23 1520
[13] Tiliwalidi K, Zhang J Z and Xie S C 2019 Int. J. Theor. Phys. 58 3510
[14] Dai J Q, Zhang S B and Xia J Y 2020 Int. J. Comput. Sci. Eng. 22 243
[15] Wen X J and Liu Y 2007 Journal of Electronics 35 1079
[16] Wen X J, Liu Y and Zhang P Y 2007 Wuhan University Journal of Natural Sciences. 12 29
[17] Wen X J, Liu Y and Zhou N R 2008 Int. J. Mod. Phys. B 22 4251
[18] Du C B, Shi R H, Zhong H, Cui J, Zhang Shun and Xu Y 2016 J. Quantum Electron. 33 329
[19] Jiang D H, Hu Z Q, Liang X Q and Xu G B 2019 Quantum Information Processing 18 268
[20] He Q Q, Xin X J and Yang Q L 2021 Quantum Information Processing 20 26
[21] Wang T Y, Wang X X, Cai X Q and Zhang R L 2020 Quantum Information Processing 19 241
[22] Yu J and Zhang J H 2021 Int. J. Theor. Phys. 60 2709
[23] Qin H W, Tang W K S and Tso R 2019 Quantum Information Processing 18 53
[24] Zhang W, Rong Z B, Huang Z M and Zheng S G 2019 Int. J. Theor. Phys. 58 2744
[25] Shao A X, Zhang J Z and Xie S C 2017 Int. J. Theor. Phys. 56 1241
[26] Niu X F, Zhang J Z, Xie S C and Chen B Q 2018 Commun. Theor. Phys. 70 529
[27] Shang T, Zhao X J, Wang C and Liu J W 2015 Quantum Information Processing 14 393
[28] Luo Q B, Yang G W, She K, Li X Y and Fang J B 2016 Quantum Information Processing 15 5051
[29] Li K, Shang T and Liu J W 2017 Quantum Information Processing 16 246
[30] Shang T, Pei Z, Chen Liu R Y and Liu J W 2019 Computers, Materials & Continua 59 149
[31] Lin Q, Yan H Y, Huang Z G and Chen W B 2018 IEEE Access 6 20632
[32] Xie C G, Weng J, Lu W and Hou L 2020 Science China Information Sciences 63 139107
[33] Niu P H, Chen Y and Li C 2016 Int. J. Theor. Phys. 55 302
[34] Du Z L, Li X L and Liu X J 2020 Int. J. Theor. Phys. 59 622
[35] Gao G and Wang Y 2017 Commun. Theor. Phys. 67 33
[36] Zou H J, Zhang K J and Song T T 2013 Quantum Information Processing 12 2343
[37] Yang Y G, Wang Y H and Wen Q Y 2010 Chin. Phys. B 19 070304
[38] Yang Y T, Xue T and Li Z C 2011 Journal of University of Science and Technology of China 41 924
[39] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L and Chen Z B 2022 PRX Quantum 3 020315
[1] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[2] Dynamic quantum secret sharing protocol based on two-particle transform of Bell states
Yu-Tao Du(杜宇韬), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2018, 27(8): 080304.
[3] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[4] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[5] An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension
Gao Gan (高干). Chin. Phys. B, 2015, 24(8): 080305.
[6] A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states
Xu Shu-Jiang (徐淑奖), Chen Xiu-Bo (陈秀波), Wang Lian-Hai (王连海), Niu Xin-Xin (钮心忻), Yang Yi-Xian (杨义先). Chin. Phys. B, 2015, 24(5): 050306.
[7] Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise
Wang Chao (王朝), Liu Jian-Wei (刘建伟), Chen Xiu-Bo (陈秀波), Bi Ya-Gang (毕亚港), Shang Tao (尚涛). Chin. Phys. B, 2015, 24(4): 040304.
[8] Enhanced arbitrated quantum signature scheme using Bell states
Wang Chao (王朝), Liu Jian-Wei (刘建伟), Shang Tao (尚涛). Chin. Phys. B, 2014, 23(6): 060309.
[9] Arbitrated quantum signature scheme based on entanglement swapping with signer anonymity
Li Wei (李伟), Fan Ming-Yu (范明钰), Wang Guang-Wei (王光卫). Chin. Phys. B, 2012, 21(12): 120305.
[10] Cryptanalysis and improvement of a quantum secret sharing scheme based on $\chi$-type entangled states
Zhu Zhen-Chao(朱珍超), Zhang Yu-Qing(张玉清), and Fu An-Min(付安民) . Chin. Phys. B, 2012, 21(1): 010307.
[11] Efficient quantum secret sharing scheme with two-particle entangled states
Zhu Zhen-Chao(朱珍超), Zhang Yu-Qing(张玉清), and Fu An-Min(付安民) . Chin. Phys. B, 2011, 20(4): 040306.
[12] Controlled quantum teleportation with Bell states
Wang Tian-Yin(王天银) and Wen Qiao-Yan(温巧燕) . Chin. Phys. B, 2011, 20(4): 040307.
[13] Indistinguishability of orthogonal time-separated bell states
Tan Yong-Gang(谭勇刚), Cai Qing-Yu(蔡庆宇), and Shi Ting-Yun(史庭云). Chin. Phys. B, 2008, 17(9): 3194-3197.
[14] Multi-proxy quantum group signature scheme with threshold shared verification
Yang Yu-Guang(杨宇光) . Chin. Phys. B, 2008, 17(2): 415-418.
[15] Suppression of decoherence by bath ordering
Jing Jun(景俊) and Ma Hong-Ru(马红孺). Chin. Phys. B, 2007, 16(6): 1489-1504.
No Suggested Reading articles found!