Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050302    DOI: 10.1088/1674-1056/acb9f1
GENERAL Prev   Next  

Bounds on positive operator-valued measure based coherence of superposition

Meng-Li Guo(郭梦丽)1, Jin-Min Liang(梁津敏)1, Bo Li(李波)2, Shao-Ming Fei(费少明)1,3,†, and Zhi-Xi Wang(王志玺)1,‡
1 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China;
2 School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China;
3 Max-Planck-Institute for Mathematics in the Sciences, Leipzig 04103, Germany
Abstract  Quantum coherence is a fundamental feature of quantum physics and plays a significant role in quantum information processing. By generalizing the resource theory of coherence from von Neumann measurements to positive operator-valued measures (POVMs), POVM-based coherence measures have been proposed with respect to the relative entropy of coherence, the l1 norm of coherence, the robustness of coherence and the Tsallis relative entropy of coherence. We derive analytically the lower and upper bounds on these POVM-based coherence of an arbitrary given superposed pure state in terms of the POVM-based coherence of the states in superposition. Our results can be used to estimate range of quantum coherence of superposed states. Detailed examples are presented to verify our analytical bounds.
Keywords:  coherence      POVM-based coherence      relative entropy      l1 norm      Tsallis relative entropy  
Received:  20 November 2022      Revised:  31 January 2023      Accepted manuscript online:  08 February 2023
PACS:  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075159, 12171044, and 12175147), the Natural Science Foundation of Beijing (Grant No. Z190005), the Academician Innovation Platform of Hainan Province, Shenzhen Institute for Quantum Science and Engineering, and Southern University of Science and Technology (Grant No. SIQSE202001).
Corresponding Authors:  Shao-Ming Fei, Zhi-Xi Wang     E-mail:  feishm@cnu.edu.cn;wangzhx@cnu.edu.cn

Cite this article: 

Meng-Li Guo(郭梦丽), Jin-Min Liang(梁津敏), Bo Li(李波), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺) Bounds on positive operator-valued measure based coherence of superposition 2023 Chin. Phys. B 32 050302

[1] Jozsa R and Linden N 2003 Proc. R. Soc. A 459 2011
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Designolle S, Uola R, Luoma K and Brunner N 2021 Phys. Rev. Lett. 126 220404
[4] Linden N, Popescu S and Smolin J A 2006 Phys. Rev. Lett. 97 100502
[5] Gilad G 2007 Phys. Rev. A 76 052320
[6] Niset J and Cerf N J 2007 Phys. Rev. A 76 042328
[7] Akhtarshenas S J 2011 Phys. Rev. A 83 042306
[8] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[9] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[10] Hu M L, Hu X, Wang J, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762 1-100
[11] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[12] Bu K F, U Singh, Fei S M, Pati A K and Wu J D 2017 Phys. Rev. Lett. 119 150405
[13] Zhao H Q and Yu C S 2018 Sci. Rep. 8 299
[14] Xiong C H, Kumar A and Wu J D 2018 Phys. Rev. A 98 032324
[15] Guo M L, Jin Z X, Li B, Hu B and Fei S M 2020 Quantum Inf. Process. 19 382
[16] Bischof F, Kampermann H and Bruß D 2019 Phys. Rev. Lett 123 110402
[17] Bischof F, Kampermann H and Bruß D 2021 Phys. Rev. A 103 032429
[18] Xu J W, Shao L H and Fei S M 2020 Phys. Rev. A 102 012411
[19] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information(Cambridge: Cambridge University Press) pp. 155– 162
[20] Jin Z X, Yang L M, Fei S M, Li-Jost X, Wang Z X, Long G L and Qiao C F 2021 Sci. China Phys. Mech. Astron. 64 280311
[21] Yue Q L, Liu F, Yu C H, Wang X L and Gao F 2016 arXiv preprint arXiv: 1605.04067
[22] Liu F and Li F 2016 Quantum Inf. Process. 15 4203
[23] Yue Q L, Gao F, Wen Q Y and Zhang W W 2017 Sci. Rep. 7 4006
[24] Yuwen S S, Shao L H and Xi Z J 2019 Commun. Theor. Phys. 71 9
[25] Singh U, Bera M N, Misra A and Pati A K 2015 arXiv preprint arXiv: 1506.08186
[26] Xu J W, Zhang L and Fei S M 2022 Quantum Inf. Process. 21 39
[27] Piani M, Cianciaruso M, Bromley T R, Napoli C, Johnston N and Adesso G 2016 Phys. Rev. A 93 042107
[28] Rastegin A E 2016 Phys. Rev. A 93 032136
[29] Rastegin A E 2013 Eur. Phys. J. D 67 269
[30] Audenaert K M 1990 Lett. Math Phys. 19 167
[31] Peres A 2006 Quantum Theory: Concepts and Methods (New York: Springer Science & Business Media) pp. 55–60
[32] Decker T, Janzing D and Rötteler M 2005 J. Math. Phys. 46 012104
[33] Roy P and Qureshi T 2019 Phys. Scr. 94 095004
[34] Chen X, Deng Y, Liu S, Pramanik T, Mao J, Bao J, Zhai C, Yuan H, Guo J, Fei S M, Tang B, Yang Y, Li Z, He Q, Gong Q and Wang J 2021 Nat. Commun. 12 2712
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[3] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[4] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[5] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[6] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[7] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[8] Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water
Fei Gao(高飞), Fang-Hua Xu(徐芳华), and Zheng-Lin Li(李整林). Chin. Phys. B, 2022, 31(11): 114302.
[9] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[10] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[11] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[12] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[13] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[14] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[15] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
No Suggested Reading articles found!