CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer |
Xin Wang(王鑫), Xiang-Qin Li(李香琴)†, Tian-Qing Liu(刘天庆)‡, Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹) |
School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract Natural and artificially prepared nanorods' surfaces have proved to have good bactericidal effect and self-cleaning property. In order to investigate whether nanorods can kill the enveloped virus, like destroying bacterial cell, we study the interaction between nanorods and virus envelope by establishing the models of nanorods with different sizes as well as the planar membrane and vesicle under the Dry Martini force field of molecular dynamics simulation. The results show that owing to the van der Waals attraction between nanorods and the tail hydrocarbon chain groups of phospholipid molecules, the phospholipid molecules on virus envelope are adsorbed to nanorods on a large scale. This process will increase the surface tension of lipid membrane and reduce the order of lipid molecules, resulting in irreparable damage to planar lipid membrane. Nanorods with different diameters have different effects on vesicle envelope, the larger the diameter of nanorod, the weaker the van der Waals effect on the unit cross-sectional area is and the smaller the degree of vesicle deformation. There is synergy between the nanorods in the nanorod array, which can enhance the speed and scale of lipid adsorption. The vesicle adsorbed in the array are difficult to desorb, and even if desorbed, vesicle will be seriously damaged. The deformation rate of the vesicle adsorbed in the nanorod array exceeds 100%, implying that the nanorod array has a strong destructive effect on the vesicle. This preliminarily proves the feasibility of nanorod array on a surface against enveloped virus, and provides a reference for the design of corresponding nanorods surface.
|
Received: 13 February 2022
Revised: 10 April 2022
Accepted manuscript online: 12 May 2022
|
PACS:
|
62.25.-g
|
(Mechanical properties of nanoscale systems)
|
|
31.15.at
|
(Molecule transport characteristics; molecular dynamics; electronic structure of polymers)
|
|
42.62.Be
|
(Biological and medical applications)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21676041). |
Corresponding Authors:
Xiang-Qin Li, Xiang-Qin Liu
E-mail: xiangqinli@163.com;liutq@dlut.edu.cn
|
Cite this article:
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹) Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer 2023 Chin. Phys. B 32 016201
|
[1] Barcena M, Oostergetel G T, Bartelink W, Faas F G A, Verkleij A, Rottier P J M, Koster A J and Bosch B J 2009 Proc. Natl. Acad. Sci. USA 106 582 [2] Neuman B W and Buchmeier M J 2016 Adv. Virus. Res. 96 1 [3] Garrido P F, Calvelo M, Blanco-Gonzalez A, Veleiro U, Suarez F, Conde D, Cabezon A, Pineiro A and Garcia-Fandino R 2020 Int. J. Pharm. 588 119689 [4] Bchetnia M, Girard C, Duchaine C and Laprise C 2020 J. Infect. Public Health 13 1601 [5] Li S, Eghiaian F, Sieben C, Herrmann A and Schaap I A T 2011 Biophys. J. 100 637 [6] Doremalen N V, Bushmaker T, Morris D H, et al. 2020 N. Engl. J. Med. 382 1564 [7] Zhang D, Chen L, Zang C, Chen Y and Lin H 2013 Carbohydr Polym. 92 2088 [8] Yemiş F 2020 Pakistan Journal of Analytical & Environmental Chemistry 21 179 [9] Ivanova E P, Hasan J, Webb H K, Truong V K, Watson G S, Watson J A, Baulin V A, Pogodin S, Wang J Y, Tobin M J, Lobbe C and Crawford R J 2012 Small 8 2489 [10] Bandara C D, Singh S, Afara I O, Wolff A, Tesfamichael T, Ostrikov K and Oloyede A 2017 ACS Appl. Mater. Interfaces 9 6746 [11] Ivanova E P, Hasan J, Webb H K, Gervinskas G, Juodkazis S, Truong V K, Wu A H, Lamb R N, Baulin V A, Watson G S, Watson J A, Mainwaring D E and Crawford R J 2013 Nat. Commun. 4 2838 [12] Sengstock C, Lopian M, Motemani Y, Borgmann A, Khare C, Buenconsejo P J, Schildhauer T A, Ludwig A and Koller M 2014 Nanotechnology 25 195101 [13] Susarrey-Arce A, Sorzabal-Bellido I, Oknianska A, McBride F, Beckett A J, Gardeniers J G E, Raval R, Tiggelaar R M and Diaz Fernandez Y A 2016 J. Mater. Chem. B 4 3104 [14] Cui Q, Liu T, Li X, Song K and Ge D 2020 ACS Appl. Nano Mater. 3 4599 [15] Xue F, Liu J, Guo L, Zhang L and Li Q 2015 J. Theor. Biol. 385 1 [16] Liu T, Cui Q, Wu Q, Li X, Song K, Ge D and Guan S 2019 J. Phys. Chem. B 123 8686 [17] Ivanova E P, Linklater D P, Werner M, Baulin V A, Xu X, Vrancken N, Rubanov S, Hanssen E, Wandiyanto J, Truong V K, Elbourne A, Maclaughlin S, Juodkazis S and Crawford R J 2020 Proc. Natl. Acad. Sci. USA 117 12598 [18] Watson G S, Green D W, Schwarzkopf L, Li X, Cribb B W, Myhra S and Watson J A 2015 Acta Biomater 21 109 [19] Tripathy A, Sen P, Su B and Briscoe W H 2017 Adv. Colloid Interface Sci. 248 85 [20] Widyaratih D S, Hagedoorn P L, Otten L G, Ganjian M, Tumer N, Apachitei I, Hagen C W, Fratila-Apachitei L E and Zadpoor A A 2019 Nanotechnology 30 ab0a3a [21] Hwang H, Paracini N, Parks J M, Lakey J H and Gumbart J C 2018 Biochim. Biophys. Acta Biomembr. 1860 2566 [22] Zheng J 2020 Int. J. Biol. Sci. 16 1678 [23] Cheeseman S, Truong V K, Walter V, Thalmann F, Marques C M, Hanssen E, Vongsvivut J, Tobin M J, Baulin V A, Juodkazis S, Maclaughlin S, Bryant G, Crawford R J and Ivanova E P 2019 Langmuir 35 2422 [24] Bromberg L, Bromberg D J, Hatton T A, Bandin I, Concheiro A and Alvarez-Lorenzo C 2012 Langmuir 28 4548 [25] de Souza E S J M, Hanchuk T D, Santos M I, Kobarg J, Bajgelman M C and Cardoso M B 2016 ACS Appl. Mater. Interfaces 8 16564 [26] Cagno V, Andreozzi P, D'Alicarnasso M, Jacob Silva P, Mueller M, Galloux M, Le Goffic R, Jones S T, Vallino M, Hodek J, Weber J, Sen S, Janecek E R, Bekdemir A, Sanavio B, Martinelli C, Donalisio M, Rameix Welti M A, Eleouet J F, Han Y, Kaiser L, Vukovic L, Tapparel C, Kral P, Krol S, Lembo D and Stellacci F 2018 Nat. Mater. 17 195 [27] Marzinek J K, Huber R G and Bond P J 2020 Curr. Opin. Struct. Biol. 61 146 [28] Huber R G, Marzinek J K, Boon P L S, Yue W and Bond P J 2021 Methods 185 28 [29] Kraszewski S, Bianco A, Tarek M and Ramseyer C 2012 PLoS One 7 e40703 [30] Lacerda L, Ali-Boucetta H, Kraszewski S, Tarek M, Prato M, Ramseyer C, Kostarelos K and Bianco A 2013 Nanoscale 5 10242 [31] Zhu W, von dem Bussche A, Yi X, Qiu Y, Wang Z, Weston P, Hurt R H, Kane A B and Gao H 2016 Proc. Natl. Acad. Sci. USA 113 12374 [32] Lin J, Zhang H, Chen Z and Zheng Y 2010 Acs Nano 4 5421 [33] Yang K and Ma Y Q 2010 Nat. Nanotechnol. 5 579 [34] Chen X, Tieleman D P and Liang Q 2018 Nanoscale 10 2481 [35] Wu R, Ou X, Tian R, Zhang J, Jin H, Dong M, Li J and Liu L 2018 Nanoscale 10 20162 [36] Roy S, Mondal A, Yadav V, Sarkar A, Banerjee R, Sanpui P and Jaiswal A 2019 ACS Appl. Bio. Mater. 2 2738 [37] Arnarez C, Uusitalo J J, Masman M F, Ingolfsson H I, de Jong D H, Melo M N, Periole X, de Vries A H and Marrink S J 2015 J. Chem. Theory Comput. 11 260 [38] A F B, Timr S, Melchionna S, Derreumaux P, Baaden M and Sterpone F 2019 Sci. Rep. 9 16450 [39] Hardt S 2016 Phys. Rev. E 93 052139 [40] Thai T, Zheng Y, Ng S H, Mudie S, Altissimo M and Bach U 2012 Angew. Chem. Int. Ed. Engl 51 8732 [41] Martin A, Schopf C, Pescaglini A, Wang J J and Iacopino D 2014 Langmuir 30 10206 [42] Qi Y, Ingolfsson H I, Cheng X, Lee J, Marrink S J and Im W 2015 J. Chem. Theory Comput. 11 4486 [43] Earnest J T, Hantak M P, Park J E and Gallagher T 2015 J. Virol. 89 6093 [44] Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt C J, Cerikan B, Lu J M, Peukes J, Xiong X, Krausslich H G, Scheres S H W, Bartenschlager R and Briggs J A G 2020 Nature 588 498 [45] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701 [46] Humphrey W F, Dalke A and Schulten K 1996 Journal of Molecular Graphics 14 33 [47] Li Y, Chen X and Gu N 2008 J. Phys. Chem. B 112 16647 [48] Jing B and Zhu Y 2011 J. Am. Chem. Soc. 133 10983 [49] Cui Q, Liu T, Li X, Zhao L, Wu Q, Wang X, Song K and Ge D 2021 Colloids Surf. B Biointerfaces 206 111929 [50] Hategan A, Law R, Kahn S and Discher D E 2003 Biophysical Journal 85 2746 [51] Stocks S M and Thomas C R 2001 Biotechnology and Bioengineering 73 370 [52] Bo L and Waugh R E 1989 Biophysical Journal 55 509 [53] Rahaman O, Van Duin A C T, Goddard W A and Doren D J 2011 J. Phys. Chem. B 115 249 [54] Best R B, Zhu X, Shim J, Lopes P E, Mittal J, Feig M and Mackerell A D 2012 J. Chem. Theory Comput. 8 3257 [55] Humphrey W F, Dalke A and Schulten K 1996 Journal of Molecular Graphics 14 33 [56] Lin J, Zhang H, Chen Z and Zheng Y 2010 Acs Nano 4 5421 [57] Hardt S 2016 Phys. Rev. E 93 052139 [58] Arnarez C, Uusitalo J J, Masman M F, Ingolfsson H I, de Jong D H, Melo M N, Periole X, de Vries A H and Marrink S J 2015 J. Chem. Theory Comput. 11 260 [59] Qi Y, Ingolfsson H I, Cheng X, Lee J, Marrink S J and Im W 2015 J. Chem. Theory Comput. 11 4486 [60] Nagle J F, Zhang R, Tristram-Nagle S, Sun W, Petrache H I and Suter R M 1996 Biophysical Journal 70 1419 [61] Song B, Yuan H, Jameson C J and Murad S 2011 Molecular Physics 109 1511 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|