Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 016201    DOI: 10.1088/1674-1056/ac6ed8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer

Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹)
School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  Natural and artificially prepared nanorods' surfaces have proved to have good bactericidal effect and self-cleaning property. In order to investigate whether nanorods can kill the enveloped virus, like destroying bacterial cell, we study the interaction between nanorods and virus envelope by establishing the models of nanorods with different sizes as well as the planar membrane and vesicle under the Dry Martini force field of molecular dynamics simulation. The results show that owing to the van der Waals attraction between nanorods and the tail hydrocarbon chain groups of phospholipid molecules, the phospholipid molecules on virus envelope are adsorbed to nanorods on a large scale. This process will increase the surface tension of lipid membrane and reduce the order of lipid molecules, resulting in irreparable damage to planar lipid membrane. Nanorods with different diameters have different effects on vesicle envelope, the larger the diameter of nanorod, the weaker the van der Waals effect on the unit cross-sectional area is and the smaller the degree of vesicle deformation. There is synergy between the nanorods in the nanorod array, which can enhance the speed and scale of lipid adsorption. The vesicle adsorbed in the array are difficult to desorb, and even if desorbed, vesicle will be seriously damaged. The deformation rate of the vesicle adsorbed in the nanorod array exceeds 100%, implying that the nanorod array has a strong destructive effect on the vesicle. This preliminarily proves the feasibility of nanorod array on a surface against enveloped virus, and provides a reference for the design of corresponding nanorods surface.
Keywords:  nanorods surface      enveloped virus      lipids adsorption      vesicle deformation  
Received:  13 February 2022      Revised:  10 April 2022      Accepted manuscript online:  12 May 2022
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  42.62.Be (Biological and medical applications)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21676041).
Corresponding Authors:  Xiang-Qin Li, Xiang-Qin Liu     E-mail:  xiangqinli@163.com;liutq@dlut.edu.cn

Cite this article: 

Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹) Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer 2023 Chin. Phys. B 32 016201

[1] Barcena M, Oostergetel G T, Bartelink W, Faas F G A, Verkleij A, Rottier P J M, Koster A J and Bosch B J 2009 Proc. Natl. Acad. Sci. USA 106 582
[2] Neuman B W and Buchmeier M J 2016 Adv. Virus. Res. 96 1
[3] Garrido P F, Calvelo M, Blanco-Gonzalez A, Veleiro U, Suarez F, Conde D, Cabezon A, Pineiro A and Garcia-Fandino R 2020 Int. J. Pharm. 588 119689
[4] Bchetnia M, Girard C, Duchaine C and Laprise C 2020 J. Infect. Public Health 13 1601
[5] Li S, Eghiaian F, Sieben C, Herrmann A and Schaap I A T 2011 Biophys. J. 100 637
[6] Doremalen N V, Bushmaker T, Morris D H, et al. 2020 N. Engl. J. Med. 382 1564
[7] Zhang D, Chen L, Zang C, Chen Y and Lin H 2013 Carbohydr Polym. 92 2088
[8] Yemiş F 2020 Pakistan Journal of Analytical & Environmental Chemistry 21 179
[9] Ivanova E P, Hasan J, Webb H K, Truong V K, Watson G S, Watson J A, Baulin V A, Pogodin S, Wang J Y, Tobin M J, Lobbe C and Crawford R J 2012 Small 8 2489
[10] Bandara C D, Singh S, Afara I O, Wolff A, Tesfamichael T, Ostrikov K and Oloyede A 2017 ACS Appl. Mater. Interfaces 9 6746
[11] Ivanova E P, Hasan J, Webb H K, Gervinskas G, Juodkazis S, Truong V K, Wu A H, Lamb R N, Baulin V A, Watson G S, Watson J A, Mainwaring D E and Crawford R J 2013 Nat. Commun. 4 2838
[12] Sengstock C, Lopian M, Motemani Y, Borgmann A, Khare C, Buenconsejo P J, Schildhauer T A, Ludwig A and Koller M 2014 Nanotechnology 25 195101
[13] Susarrey-Arce A, Sorzabal-Bellido I, Oknianska A, McBride F, Beckett A J, Gardeniers J G E, Raval R, Tiggelaar R M and Diaz Fernandez Y A 2016 J. Mater. Chem. B 4 3104
[14] Cui Q, Liu T, Li X, Song K and Ge D 2020 ACS Appl. Nano Mater. 3 4599
[15] Xue F, Liu J, Guo L, Zhang L and Li Q 2015 J. Theor. Biol. 385 1
[16] Liu T, Cui Q, Wu Q, Li X, Song K, Ge D and Guan S 2019 J. Phys. Chem. B 123 8686
[17] Ivanova E P, Linklater D P, Werner M, Baulin V A, Xu X, Vrancken N, Rubanov S, Hanssen E, Wandiyanto J, Truong V K, Elbourne A, Maclaughlin S, Juodkazis S and Crawford R J 2020 Proc. Natl. Acad. Sci. USA 117 12598
[18] Watson G S, Green D W, Schwarzkopf L, Li X, Cribb B W, Myhra S and Watson J A 2015 Acta Biomater 21 109
[19] Tripathy A, Sen P, Su B and Briscoe W H 2017 Adv. Colloid Interface Sci. 248 85
[20] Widyaratih D S, Hagedoorn P L, Otten L G, Ganjian M, Tumer N, Apachitei I, Hagen C W, Fratila-Apachitei L E and Zadpoor A A 2019 Nanotechnology 30 ab0a3a
[21] Hwang H, Paracini N, Parks J M, Lakey J H and Gumbart J C 2018 Biochim. Biophys. Acta Biomembr. 1860 2566
[22] Zheng J 2020 Int. J. Biol. Sci. 16 1678
[23] Cheeseman S, Truong V K, Walter V, Thalmann F, Marques C M, Hanssen E, Vongsvivut J, Tobin M J, Baulin V A, Juodkazis S, Maclaughlin S, Bryant G, Crawford R J and Ivanova E P 2019 Langmuir 35 2422
[24] Bromberg L, Bromberg D J, Hatton T A, Bandin I, Concheiro A and Alvarez-Lorenzo C 2012 Langmuir 28 4548
[25] de Souza E S J M, Hanchuk T D, Santos M I, Kobarg J, Bajgelman M C and Cardoso M B 2016 ACS Appl. Mater. Interfaces 8 16564
[26] Cagno V, Andreozzi P, D'Alicarnasso M, Jacob Silva P, Mueller M, Galloux M, Le Goffic R, Jones S T, Vallino M, Hodek J, Weber J, Sen S, Janecek E R, Bekdemir A, Sanavio B, Martinelli C, Donalisio M, Rameix Welti M A, Eleouet J F, Han Y, Kaiser L, Vukovic L, Tapparel C, Kral P, Krol S, Lembo D and Stellacci F 2018 Nat. Mater. 17 195
[27] Marzinek J K, Huber R G and Bond P J 2020 Curr. Opin. Struct. Biol. 61 146
[28] Huber R G, Marzinek J K, Boon P L S, Yue W and Bond P J 2021 Methods 185 28
[29] Kraszewski S, Bianco A, Tarek M and Ramseyer C 2012 PLoS One 7 e40703
[30] Lacerda L, Ali-Boucetta H, Kraszewski S, Tarek M, Prato M, Ramseyer C, Kostarelos K and Bianco A 2013 Nanoscale 5 10242
[31] Zhu W, von dem Bussche A, Yi X, Qiu Y, Wang Z, Weston P, Hurt R H, Kane A B and Gao H 2016 Proc. Natl. Acad. Sci. USA 113 12374
[32] Lin J, Zhang H, Chen Z and Zheng Y 2010 Acs Nano 4 5421
[33] Yang K and Ma Y Q 2010 Nat. Nanotechnol. 5 579
[34] Chen X, Tieleman D P and Liang Q 2018 Nanoscale 10 2481
[35] Wu R, Ou X, Tian R, Zhang J, Jin H, Dong M, Li J and Liu L 2018 Nanoscale 10 20162
[36] Roy S, Mondal A, Yadav V, Sarkar A, Banerjee R, Sanpui P and Jaiswal A 2019 ACS Appl. Bio. Mater. 2 2738
[37] Arnarez C, Uusitalo J J, Masman M F, Ingolfsson H I, de Jong D H, Melo M N, Periole X, de Vries A H and Marrink S J 2015 J. Chem. Theory Comput. 11 260
[38] A F B, Timr S, Melchionna S, Derreumaux P, Baaden M and Sterpone F 2019 Sci. Rep. 9 16450
[39] Hardt S 2016 Phys. Rev. E 93 052139
[40] Thai T, Zheng Y, Ng S H, Mudie S, Altissimo M and Bach U 2012 Angew. Chem. Int. Ed. Engl 51 8732
[41] Martin A, Schopf C, Pescaglini A, Wang J J and Iacopino D 2014 Langmuir 30 10206
[42] Qi Y, Ingolfsson H I, Cheng X, Lee J, Marrink S J and Im W 2015 J. Chem. Theory Comput. 11 4486
[43] Earnest J T, Hantak M P, Park J E and Gallagher T 2015 J. Virol. 89 6093
[44] Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt C J, Cerikan B, Lu J M, Peukes J, Xiong X, Krausslich H G, Scheres S H W, Bartenschlager R and Briggs J A G 2020 Nature 588 498
[45] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
[46] Humphrey W F, Dalke A and Schulten K 1996 Journal of Molecular Graphics 14 33
[47] Li Y, Chen X and Gu N 2008 J. Phys. Chem. B 112 16647
[48] Jing B and Zhu Y 2011 J. Am. Chem. Soc. 133 10983
[49] Cui Q, Liu T, Li X, Zhao L, Wu Q, Wang X, Song K and Ge D 2021 Colloids Surf. B Biointerfaces 206 111929
[50] Hategan A, Law R, Kahn S and Discher D E 2003 Biophysical Journal 85 2746
[51] Stocks S M and Thomas C R 2001 Biotechnology and Bioengineering 73 370
[52] Bo L and Waugh R E 1989 Biophysical Journal 55 509
[53] Rahaman O, Van Duin A C T, Goddard W A and Doren D J 2011 J. Phys. Chem. B 115 249
[54] Best R B, Zhu X, Shim J, Lopes P E, Mittal J, Feig M and Mackerell A D 2012 J. Chem. Theory Comput. 8 3257
[55] Humphrey W F, Dalke A and Schulten K 1996 Journal of Molecular Graphics 14 33
[56] Lin J, Zhang H, Chen Z and Zheng Y 2010 Acs Nano 4 5421
[57] Hardt S 2016 Phys. Rev. E 93 052139
[58] Arnarez C, Uusitalo J J, Masman M F, Ingolfsson H I, de Jong D H, Melo M N, Periole X, de Vries A H and Marrink S J 2015 J. Chem. Theory Comput. 11 260
[59] Qi Y, Ingolfsson H I, Cheng X, Lee J, Marrink S J and Im W 2015 J. Chem. Theory Comput. 11 4486
[60] Nagle J F, Zhang R, Tristram-Nagle S, Sun W, Petrache H I and Suter R M 1996 Biophysical Journal 70 1419
[61] Song B, Yuan H, Jameson C J and Murad S 2011 Molecular Physics 109 1511
[1] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[2] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[3] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[4] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[5] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[6] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[7] Molecular dynamics study of plastic deformation mechanism in Cu/Ag multilayers
Yuan-Yuan Tian(田圆圆), Jia Li(李甲), Ze-Ying Hu(胡泽英), Zhi-Peng Wang(王志鹏), Qi-Hong Fang(方棋洪). Chin. Phys. B, 2017, 26(12): 126802.
[8] Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film
Qi-lin Xiong(熊启林), Xin Tian(田昕). Chin. Phys. B, 2017, 26(9): 096501.
[9] Molecular dynamics simulation of structural change at metal/semiconductor interface induced by nanoindenter
Bing-Bing Zhao(赵兵兵), Ying Wang(王影), Chang Liu(刘畅), Xiao-Chun Wang(王晓春). Chin. Phys. B, 2016, 25(11): 114601.
[10] Investigation of mechanical properties of twin gold crystal nanowires under uniaxial load by molecular dynamics method
Guo-Wei Zhang(张国伟), Zai-Lin Yang(杨在林), Gang Luo(罗刚). Chin. Phys. B, 2016, 25(8): 086203.
[11] Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage
E Lotfi, H Rezania, B Arghavaninia, M Yarmohammadi. Chin. Phys. B, 2016, 25(7): 076102.
[12] Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films
Ali Badawi, N. Al-Hosiny. Chin. Phys. B, 2015, 24(10): 105101.
[13] ReaxFF molecular dynamics study on oxidationbehavior of 3C-SiC: Polar face effects
Sun Yu (孙瑜), Liu Yi-Jun (刘轶军), Xu Fei (徐绯). Chin. Phys. B, 2015, 24(9): 096203.
[14] Effects of tilt interface boundary on mechanical properties of Cu/Ni nanoscale metallic multilayer composites
Yang Meng (杨萌), Xu Jian-Gang (徐建刚), Song Hai-Yang (宋海洋), Zhang Yun-Guang (张云光). Chin. Phys. B, 2015, 24(9): 096202.
[15] Mechanical properties of copper nanocube under three-axial tensile loadings
Yang Zai-Lin (杨在林), Zhang Guo-Wei (张国伟), Luo Gang (罗刚). Chin. Phys. B, 2015, 24(6): 066203.
No Suggested Reading articles found!