Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 124205    DOI: 10.1088/1674-1056/ab4d46
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range

Sepehr Razi1, Fatemeh Ghasemi2
1 Faculty of Electrical Engineering, Urmia University of Technology(UUT), Urmia, Iran;
2 Department of Energy Engineering and Physics, Amirkabir University of Technology, PO Box 15875-4413, Tehran, Iran
Abstract  Optical features of a semiconductor-dielectric photonic crystal are studied theoretically. Alternating layers of micrometer sized SiO2/InSb slabs are considered as building blocks of the proposed ideal crystal. By inserting additional layers and disrupting the regularity, two more defective crystals are also proposed. Photonic band structure of the ideal crystal and its dependence on the structural parameters are explored at the first step. Transmittance of the defective crystals and its changes with the thicknesses of the layers are studied. After extracting the optimum values for the thicknesses of the unit cells of the crystals, the optical response of the proposed structures at different temperatures and incident angles are investigated. Changes of the defect layers' induced mode(s) are discussed by taking into consideration of the temperature dependence of the InSb layer permittivity. The results clearly reflect the high potential of the proposed crystals to be used at high temperature terahertz technology as a promising alternative to their electronic counterparts.
Keywords:  photonic band gap      photonic crystal      semiconductor layer      defect mode  
Received:  17 May 2019      Revised:  04 September 2019      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Corresponding Authors:  Sepehr Razi     E-mail:  s.razi@uut.ac.ir

Cite this article: 

Sepehr Razi, Fatemeh Ghasemi One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range 2019 Chin. Phys. B 28 124205

[34] Razi S and Ghasemi F 2019 Physica B 566 77
[1] Hosseini Motlagh N S, Parvin P, Ghasemi F, Atyabi F, Jelvani S and Abolhosseini S 2016 Laser Phys. Lett. 13 075604
[35] Hung H C, Wu C J and Chang S J 2011 J. Appl. Phys. 110 093110
[2] Ghasemi F, Parvin P, Hosseini Motlagh N S and Abachi S 2017 Biomed. Optics Express 8 512
[36] Qi L, Shang L and Zhang S 2014 Phys. Plasmas 21 013501
[3] Razi S and Ghasemi F 2018 Eur. Phys. J. Plus 133 49
[37] Qi L and Zhang X 2011 J. Electromagn. Waves Appl. 25 539
[4] Ghasemi F, Razi S and Madanipour K 2018 J. Electron. Mater. 47 2871
[39] Dai X, Xiang Y, Wen S and He H 2011 J. Appl. Phys. 109 053104
[5] El-Amassi D M, Taya S A, Ramanujam N R, Vigneswaran D and Udaiyakumar R 2018 Superlattices Microstruct. 120 353
[40] Hu Z, Wu H, Gao S and Wang T 2012 IEEE J. Quantum Electron. 48 1476
[6] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[38] Chang Y H, Jhu Y Y and Wu C J 2012 J. Optoelectronics Advanced Materials 14 185
[7] John S 1987 Phys. Rev. Lett. 58 2486
[41] Ghasemi F, Roshan Entezar S and Razi S 2019 Phys. Lett. A 383 2551
[8] Costa C H 2017 Phys. Rev. B 96 125412
[9] Fu J, Chen W and Lv B 2016 Phys. Let. A 380 1793
[10] Si J and Sun C 2017 J. Appl. Phys. 122 133104
[11] Kriegel I and Scotognella F 2017 Phys. E: Low-dimensional Syst. Nanostruct. 85 34
[12] Kriegel I and Scotognella F 2018 Opt. Commun. 410 703
[13] Ghasemi F and Razi S 2019 Laser Phys. 29 046204
[14] Amri R, Sahel S, Gamra D, Lejeune M and Bouchriha H 2018 Opt. Mater. 76 222
[15] Liu C P and Fan T J 2014 Opt. & Laser Technol. 62 82
[16] Zheng W 2018 Chin. Phys. B 27 114211
[17] Nagaty A, Mehaney A and Aly A H 2018 Chin. Phys. B 27 094301
[18] Wu J J, Li Sh G, Liu Q and Shi M 2017 Chin. Phys. B 26 114209
[19] Zhang T, Sun J, Yang Y and Li Z 2018 Opt. Commun. 428 53
[20] Lou J, Cheng T and Li S 2018 Opt. Commun. 426 267
[21] Razi S and Ghasemi F 2019 Opt. Quantum Electronics 51 1
[22] Ghasemi F, Roshan Entezar S and Razi S 2019 Laser Phys. 29 056201
[23] Zhuang H, Kong F, Li K and Sheng S 2015 Jpn. J. Appl. Phys. 54 095101
[24] Senn T, Bischoff J, Nüsse N, Schoengen M and Löchel B 2011 Photon. Nanostruct.-Fundam. Appl. 9 248
[25] Wang F, Cheng Y Z, Wang X, Qi D and Luo H 2018 Opt. Mater. 75 373e378
[26] Razi S, Varlamova O, Reif J, Bestehorn M and Ratzke M 2018 Opt. & Laser Technol. 104 8
[27] Lee A J, Withford M J and Dawes J 2004 PICALO 2004 M103
[28] Ardakani A G, Kalantari T and Nadgaran H 2015 Eur. Phys. J. B 88 241
[29] Brosi J, Koos Ch, Claudio Andreani L, Waldow M, Leuthold J and Freude W 2008 Opt. Express 16 4177
[30] Segovia-Chaves F and Vinck-Posada H 2018 Physica E 104 49
[31] Qi D, Cheng Y, Wang X, Wang F, Li B and Gong R 2017 J. Phys. D: Appl. Phys. 50 505108
[32] Wang F, Cheng Y, Wang X, Zhang Y N, Nie Y and Gong R Z 2018 Materials (Basel) 11 1099
[33] Qi D, Chen F, Wang X, Luo H, Cheng Y Z, Niu X Y and Gong R Z 2018 Opt. Lett. 43 5323
[34] Razi S and Ghasemi F 2019 Physica B 566 77
[35] Hung H C, Wu C J and Chang S J 2011 J. Appl. Phys. 110 093110
[36] Qi L, Shang L and Zhang S 2014 Phys. Plasmas 21 013501
[37] Qi L and Zhang X 2011 J. Electromagn. Waves Appl. 25 539
[39] Dai X, Xiang Y, Wen S and He H 2011 J. Appl. Phys. 109 053104
[40] Hu Z, Wu H, Gao S and Wang T 2012 IEEE J. Quantum Electron. 48 1476
[38] Chang Y H, Jhu Y Y and Wu C J 2012 J. Optoelectronics Advanced Materials 14 185
[41] Ghasemi F, Roshan Entezar S and Razi S 2019 Phys. Lett. A 383 2551
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[8] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[11] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[12] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[15] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
No Suggested Reading articles found!