Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104210    DOI: 10.1088/1674-1056/abab78

Thermal tunable one-dimensional photonic crystals containing phase change material

Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†
1 School of Physics and Microstructures, Zhengzhou University, Zhengzhou 450001, China

To obtain the adjustable photonic crystals (PCs), we numerically investigate one-dimensional (1D) PCs with alternating VO2 and SiO2 layers through transfer matrix method. The dispersion relation agrees well with the transmittance obtained by the finite element calculation. Tunable band gaps are achieved with the thermal stimuli of VO2, which has two crystal structures. The monoclinic crystal structure VO2 (R) at low temperature exhibits insulating property, and the high temperature square rutile structure VO2 (M) presents metal state. Concretely, the bandwidth is getting narrower and red shift occurs with the higher temperature in VO2 (R)/SiO2 PCs structure. Based on the phase change characteristics of VO2, we can flexibly adjust the original structure as VO2 (R)/VO2 (M)/SiO2. By increasing the phase ratio of VO2 (R) to VO2 (M), the band gap width gradually becomes wider and blue shift occurs. The discrete layers of gradient composites on the dispersion of 1D PCs are also investigated, which enhances the feasibility in practical operation. Thus, our proposed thermal modulation PCs structure paves a new way to realize thermal tunable optical filters and sensors.

Keywords:  photonic crystals      VO2      thermal modulation      phase change  
Received:  10 May 2020      Revised:  05 June 2020      Accepted manuscript online:  01 August 2020
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  81.30.Dz (Phase diagrams of other materials)  
  42.79.Ci (Filters, zone plates, and polarizers)  
Corresponding Authors:  Corresponding author. E-mail:   
About author: 
†Corresponding author. E-mail:
* Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant No. 1721023100107).

Cite this article: 

Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)† Thermal tunable one-dimensional photonic crystals containing phase change material 2020 Chin. Phys. B 29 104210

Fig. 1.  

Real part of the effective dielectric constant of VO2 at different temperature in THz region.

Fig. 2.  

The 3D configuration and the cross section view of the VO2 (R)/SiO2 PCs structure.

Fig. 3.  

(a) The dispersion relation of VO2 (R)/SiO2 PCs structure obtained with transfer matrix method. (b) The transmission spectrum of the structure obtained with numerical simulation.

Fig. 4.  

The influence of temperature on the dispersion relation of VO2 (R)/SiO2 PCs in the range of 0–125 THz.

Fig. 5.  

(a) The 3D configuration and cross section view of the VO2 (R)/VO2 (M)/SiO2 PCs structure. (b) The dispersion curve obtained with transfer matrix method. (c) The transmission spectrum of VO2 (R)/VO2 (M)/SiO2 PCs structure obtained with numerical calculation.

Fig. 6.  

(a) and (c) The influence of different proportions of VO2 (R) and VO2 (M), a1/a2, on the dispersion relation. (b) and (d) The position and band gap of the first band with different a1/a2.

Fig. 7.  

(a) and (b) The position and band gap of the second band with different a1/a2. (c) and (d) The position and band gap of the third band with different a1/a2.

Fig. 8.  

(a) The dispersion curve of 1D PCs with different number of layers. (b) The position and the first band width with different layers of VO2.

Jiang H T, Chen H, Li H Q, Zhang Y W, Zi J, Zhu S Y 2004 Phys. Rev. E 69 066607 DOI: 10.1103/PhysRevE.69.066607
Colodrero S, Ocana M, Míguez H 2008 Langmuir 24 4430 DOI: 10.1021/la703987r
Yablonovitch E 1987 Phys. Rev. Lett. 58 2059 DOI: 10.1103/PhysRevLett.58.2059
John S 1987 Phys. Rev. Lett. 58 2486 DOI: 10.1103/PhysRevLett.58.2486
Notomi M, Kuramochi E, Taniyama H 2008 Opt. Express 16 11095 DOI: 10.1364/OE.16.011095
Fujita M, Takahashi S, Tanaka Y, Asano T, Noda S 2005 Science 308 1296 DOI: 10.1126/science.1110417
Noda S, Tomoda K, Yamamoto N, Chutinan A 2000 Science 289 604 DOI: 10.1126/science.289.5479.604
Benabid F, Knight J C, Antonopoulos G, Russell P, St J 2002 Science 298 399 DOI: 10.1126/science.1076408
Li S P, Liu H J, Sun Q B, Huang N 2015 IEEE Photonic Tech. L 27 752 DOI: 10.1109/LPT.2015.2391127
Wang W Y, Cui Y X, He Y R, Lin X Y, Tian X M, Ji T, He S L 2014 Opt. Lett. 39 331 DOI: 10.1364/OL.39.000331
Zhu X, Yang X D, Wang X 2017 Prog Electromagn Res. 67 103 DOI: 10.2528/PIERL17011906
Yablonovitch E, Gmitter T J, Leung K M 1991 Phys. Rev. Lett. 67 2295 DOI: 10.1103/PhysRevLett.67.2295
Jamshidi G K, Moslemi F 2017 Appl. Opt. 56 4146 DOI: 10.1364/AO.56.004146
Aly A H, Elsayed H A, Ameen A A, Mohamed S H 2017 Int. J. Mod. Phys. B 31 1750239 DOI: 10.1142/S0217979217502393
Timofeev I V, Maksimov D N, Sadreev A F 2018 Phys. Rev. B 97 024306 DOI: 10.1103/PhysRevB.97.024306
Zhao P F, Li B, Tang Z H, Gao Y, Tian H M, Chen H L 2019 Smart Mater. Struct. 28 075037 DOI: 10.1088/1361-665X/ab1fb8
Zhang Y F, Chan C C, Sun J 2010 Sens. Actuat. A-Phys. 157 276 DOI: 10.1016/j.sna.2009.11.026
Busch K, John S 1999 Phys. Rev. Lett. 83 967 DOI: 10.1103/PhysRevLett.83.967
Snapp P, Kang P, Leem J, Nam S W 2019 Adv. Funct. Mater. 29 1902216 DOI: 10.1002/adfm.201902216
Ke Y J, Balin I, Wang N, Lu Q, Tok A Y, White T J, Magdassi S, Abdulhalim I, Long Y 2016 Acs. Appl. Mater. Inter. 8 33112 DOI: 10.1021/acsami.6b12175
Fan C Z, Wang J Q, Zhu S M, He J N, Ding P 2013 J. Opt. 15 055103 DOI: 10.1088/2040-8978/15/5/055103
Liu Q, Li S G, Li J S, Dou C, Wang X Y, Wang G Y, Shi M 2016 J. Lightwave. Technol. 34 2484 DOI: 10.1109/JLT.2016.2541220
Ghasemi F, Entezar S R, Razi S 2019 Phys. Lett. A 383 2551 DOI: 10.1016/j.physleta.2019.05.016
Fan F, Hou Y, Jiang Z W, Wang X H, Chang S J 2012 Appl. Opt. 51 4589 DOI: 10.1364/AO.51.004589
Liang J R, Li P, Song X L, Zhou L W 2017 Appl. Phys. A 123 794 DOI: 10.1007/s00339-017-1420-5
Wang R, Yang W Y, Gao S, Ju X J, Zhu P F, Li B, Li Q 2019 J. Mater. Chem. C 7 8185 DOI: 10.1039/C8TC05759A
Suzuki M 1985 Phys. Rev. B 31 2957 DOI: 10.1103/PhysRevB.31.2957
Lin M, Ouyang Z B, Xu J, Qiu G X 2009 Opt. Express 17 5861 DOI: 10.1364/OE.17.005861
Bréchet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber. Technol. 6 181 DOI: 10.1006/ofte.1999.0320
Xiao X D, Cheng H L, Dong G P, Liu Y G, Chen L H, Miao L, Xu G 2013 CrystEngComm 15 1095 DOI: 10.1039/C2CE26262B
Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52 DOI: 10.1088/1367-2630/6/1/052
Kim B J, Lee Y W, Choi S, Lim J W, Yun S J, Kim H T 2008 Phys. Rev. B 77 235401 DOI: 10.1103/PhysRevB.77.235401
Jepsen P U, Fischer B M, Thoman A, Helm H 2006 Phys. Rev. B 74 205103 DOI: 10.1103/PhysRevB.74.205103
Cocker T L, Titova L V, Fourmaux S, Bandulet H C, Brassard D, Kieffer J C, Khakani M A E, Hegmann F A 2010 Appl. Phys. Lett. 97 221905 DOI: 10.1063/1.3518482
Fan C Z, Wang J Q, He J N, Ding P, Liang E J 2013 Chin. Phys. B 22 074211 DOI: 10.1088/1674-1056/22/7/074211
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[3] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[4] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[5] High-efficiency reflection phase tunable metasurface at near-infrared frequencies
Ce Li(李策), Wei Zhu(朱维), Shuo Du(杜硕), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2021, 30(5): 057802.
[6] Characterization of size effect of natural convection in melting process of phase change material in square cavity
Shi-Hao Cao(曹世豪) and Hui Wang(王辉). Chin. Phys. B, 2021, 30(10): 104403.
[7] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[8] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[9] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[10] Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid
Lan-Lan Zhang(张兰兰), Wei Liu(刘伟), Ping Li(李萍), Xi Yang(杨曦), Xu Cao(曹旭). Chin. Phys. B, 2017, 26(6): 064209.
[11] Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals
Si-Qi Zhang(张斯淇), Jing-Bin Lu(陆景彬), Yu Liang(梁禺), Ji Ma(马季), Hong Li(李宏), Xue Li(李雪), Xiao-Jing Liu(刘晓静), Xiang-Yao Wu(吴向尧), Xiang-Dong Meng(孟祥东). Chin. Phys. B, 2017, 26(2): 024208.
[12] High-temperature Raman spectroscopic study of vanadoborate Na3VO2B6O11
Ji Zhang(张季), De-Ming Zhang(张德明), Qing-Li Zhang(张庆礼), Shao-Tang Yin(殷绍唐). Chin. Phys. B, 2016, 25(3): 037802.
[13] Giant enhancement of Kerr rotation in two-dimensional Bismuth iron garnet/Ag photonic crystals
Liang Hong (梁红), Liu Huan (刘欢), Zhang Qiang (张强), Fu Shu-Fang (付淑芳), Zhou Sheng (周胜), Wang Xuan-Zhang (王选章). Chin. Phys. B, 2015, 24(6): 067807.
[14] Threshold switching uniformity in In2Se3 nanowire-based phase change memory
Chen Jian (陈键), Du Gang (杜刚), Liu Xiao-Yan (刘晓彦). Chin. Phys. B, 2015, 24(5): 057702.
[15] Tunable negative-index photonic crystals using colloidal magnetic fluids
Geng Tao (耿滔), Wang Xin (王新), Wang Yan (王岩), Dong Xiang-Mei (董祥美). Chin. Phys. B, 2015, 24(12): 124208.
No Suggested Reading articles found!